找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[復制鏈接]
樓主: legerdemain
21#
發(fā)表于 2025-3-25 05:55:38 | 只看該作者
Proper Holomorphic Mappings,In this chapter we extend the results of the previous chapters to proper holomorphic mappings. For this we introduce proper holomorphic correspondences—multiple-valued holomorphic maps.
22#
發(fā)表于 2025-3-25 07:55:19 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:11:51 | 只看該作者
Geometry of Real Hypersurfaces: Analytic Continuation,In this chapter we discuss analytic continuation of germs of biholomorphic maps between real analytic strictly pseudoconvex hypersurfaces along paths on the source hypersurface. We also explore the connection of local equivalence of real analytic boundaries of strictly pseudoconvex domains with their global biholomorphic equivalence.
25#
發(fā)表于 2025-3-25 21:03:38 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:07 | 只看該作者
Holomorphic Correspondences,In this chapter we prove that if a proper holomorphic map between bounded domains in . with real analytic boundaries extends to the boundary as a proper holomorphic correspondence then it extends as a holomorphic map.
27#
發(fā)表于 2025-3-26 04:55:13 | 只看該作者
Extension of Proper Holomorphic Mappings,In this chapter we prove that if a biholomorphic map between bounded domains in . with real analytic boundaries admits continuous extension to the boundary then it extends holomorphically to a neighbourhood of the closure of the source domain.
28#
發(fā)表于 2025-3-26 10:08:15 | 只看該作者
Extension in ,In this chapter we prove that every biholomorphic map between bounded domains in . with real analytic boundary admits holomorphic extension to a neighbourhood of the closure of the source domain.
29#
發(fā)表于 2025-3-26 15:55:12 | 只看該作者
30#
發(fā)表于 2025-3-26 16:46:50 | 只看該作者
1660-8046 esults.Offers a unified treatment theory of boundary behavio.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been develope
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高密市| 黄浦区| 林西县| 阳泉市| 永修县| 保定市| 辽阳市| 遵义县| 滨海县| 松阳县| 运城市| 英吉沙县| 建阳市| 南投市| 正安县| 富阳市| 澳门| 伊川县| 兴国县| 桃园市| 襄城县| 若羌县| 阳城县| 呼和浩特市| 枣强县| 江北区| 东平县| 祥云县| 武邑县| 阿拉善左旗| 平阳县| 巴东县| 海兴县| 青阳县| 玉林市| 金昌市| 石屏县| 玛沁县| 渝北区| 湘潭市| 东宁县|