找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: legerdemain
21#
發(fā)表于 2025-3-25 05:55:38 | 只看該作者
Proper Holomorphic Mappings,In this chapter we extend the results of the previous chapters to proper holomorphic mappings. For this we introduce proper holomorphic correspondences—multiple-valued holomorphic maps.
22#
發(fā)表于 2025-3-25 07:55:19 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:11:51 | 只看該作者
Geometry of Real Hypersurfaces: Analytic Continuation,In this chapter we discuss analytic continuation of germs of biholomorphic maps between real analytic strictly pseudoconvex hypersurfaces along paths on the source hypersurface. We also explore the connection of local equivalence of real analytic boundaries of strictly pseudoconvex domains with their global biholomorphic equivalence.
25#
發(fā)表于 2025-3-25 21:03:38 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:07 | 只看該作者
Holomorphic Correspondences,In this chapter we prove that if a proper holomorphic map between bounded domains in . with real analytic boundaries extends to the boundary as a proper holomorphic correspondence then it extends as a holomorphic map.
27#
發(fā)表于 2025-3-26 04:55:13 | 只看該作者
Extension of Proper Holomorphic Mappings,In this chapter we prove that if a biholomorphic map between bounded domains in . with real analytic boundaries admits continuous extension to the boundary then it extends holomorphically to a neighbourhood of the closure of the source domain.
28#
發(fā)表于 2025-3-26 10:08:15 | 只看該作者
Extension in ,In this chapter we prove that every biholomorphic map between bounded domains in . with real analytic boundary admits holomorphic extension to a neighbourhood of the closure of the source domain.
29#
發(fā)表于 2025-3-26 15:55:12 | 只看該作者
30#
發(fā)表于 2025-3-26 16:46:50 | 只看該作者
1660-8046 esults.Offers a unified treatment theory of boundary behavio.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been develope
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾市| 那曲县| 金沙县| 农安县| 邯郸市| 于都县| 丹凤县| 赣州市| 河池市| 镶黄旗| 珲春市| 施甸县| 普陀区| 阿荣旗| 东阳市| 池州市| 公安县| 通许县| 洪江市| 梅州市| 昌都县| 平塘县| 竹北市| 类乌齐县| 沙河市| 宣威市| 通城县| 铜山县| 本溪| 子洲县| 神木县| 沁水县| 勐海县| 海伦市| 阜新市| 绩溪县| 南平市| 邵阳县| 田林县| 太保市| 乌拉特前旗|