找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: legerdemain
21#
發(fā)表于 2025-3-25 05:55:38 | 只看該作者
Proper Holomorphic Mappings,In this chapter we extend the results of the previous chapters to proper holomorphic mappings. For this we introduce proper holomorphic correspondences—multiple-valued holomorphic maps.
22#
發(fā)表于 2025-3-25 07:55:19 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:11:51 | 只看該作者
Geometry of Real Hypersurfaces: Analytic Continuation,In this chapter we discuss analytic continuation of germs of biholomorphic maps between real analytic strictly pseudoconvex hypersurfaces along paths on the source hypersurface. We also explore the connection of local equivalence of real analytic boundaries of strictly pseudoconvex domains with their global biholomorphic equivalence.
25#
發(fā)表于 2025-3-25 21:03:38 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:07 | 只看該作者
Holomorphic Correspondences,In this chapter we prove that if a proper holomorphic map between bounded domains in . with real analytic boundaries extends to the boundary as a proper holomorphic correspondence then it extends as a holomorphic map.
27#
發(fā)表于 2025-3-26 04:55:13 | 只看該作者
Extension of Proper Holomorphic Mappings,In this chapter we prove that if a biholomorphic map between bounded domains in . with real analytic boundaries admits continuous extension to the boundary then it extends holomorphically to a neighbourhood of the closure of the source domain.
28#
發(fā)表于 2025-3-26 10:08:15 | 只看該作者
Extension in ,In this chapter we prove that every biholomorphic map between bounded domains in . with real analytic boundary admits holomorphic extension to a neighbourhood of the closure of the source domain.
29#
發(fā)表于 2025-3-26 15:55:12 | 只看該作者
30#
發(fā)表于 2025-3-26 16:46:50 | 只看該作者
1660-8046 esults.Offers a unified treatment theory of boundary behavio.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been develope
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苗栗县| 锡林浩特市| 浪卡子县| 肥东县| 黄陵县| 永新县| 宁津县| 扎赉特旗| 伊金霍洛旗| 平阴县| 平乡县| 德庆县| 永修县| 北川| 浮梁县| 商河县| 广南县| 洞头县| 合川市| 长治县| 连平县| 色达县| 海淀区| 砚山县| 夏邑县| 延边| 彭泽县| 华亭县| 黎川县| 桂平市| 邛崃市| 托克逊县| 松潘县| 永仁县| 筠连县| 左贡县| 临泽县| 青川县| 雷山县| 甘孜县| 安陆市|