找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: legerdemain
21#
發(fā)表于 2025-3-25 05:55:38 | 只看該作者
Proper Holomorphic Mappings,In this chapter we extend the results of the previous chapters to proper holomorphic mappings. For this we introduce proper holomorphic correspondences—multiple-valued holomorphic maps.
22#
發(fā)表于 2025-3-25 07:55:19 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:11:51 | 只看該作者
Geometry of Real Hypersurfaces: Analytic Continuation,In this chapter we discuss analytic continuation of germs of biholomorphic maps between real analytic strictly pseudoconvex hypersurfaces along paths on the source hypersurface. We also explore the connection of local equivalence of real analytic boundaries of strictly pseudoconvex domains with their global biholomorphic equivalence.
25#
發(fā)表于 2025-3-25 21:03:38 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:07 | 只看該作者
Holomorphic Correspondences,In this chapter we prove that if a proper holomorphic map between bounded domains in . with real analytic boundaries extends to the boundary as a proper holomorphic correspondence then it extends as a holomorphic map.
27#
發(fā)表于 2025-3-26 04:55:13 | 只看該作者
Extension of Proper Holomorphic Mappings,In this chapter we prove that if a biholomorphic map between bounded domains in . with real analytic boundaries admits continuous extension to the boundary then it extends holomorphically to a neighbourhood of the closure of the source domain.
28#
發(fā)表于 2025-3-26 10:08:15 | 只看該作者
Extension in ,In this chapter we prove that every biholomorphic map between bounded domains in . with real analytic boundary admits holomorphic extension to a neighbourhood of the closure of the source domain.
29#
發(fā)表于 2025-3-26 15:55:12 | 只看該作者
30#
發(fā)表于 2025-3-26 16:46:50 | 只看該作者
1660-8046 esults.Offers a unified treatment theory of boundary behavio.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been develope
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 大同市| 株洲市| 南岸区| 冀州市| 射阳县| 枝江市| 依安县| 抚宁县| 洪洞县| 贡山| 游戏| 博湖县| 崇阳县| 伽师县| 闽清县| 江都市| 汤原县| 益阳市| 湘潭市| 东乌珠穆沁旗| 辽宁省| 儋州市| 永安市| 军事| 新竹县| 措美县| 涡阳县| 清远市| 江山市| 保定市| 彩票| 香河县| 富民县| 南陵县| 滦南县| 泽库县| 商丘市| 平顺县| 微博| 靖宇县|