找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Harmonic Maps; Yuanlong Xin Book 1996 Birkh?user Boston 1996 Boundary value problem.Geometry.Maps.Minkowski space.cls.manifold

[復(fù)制鏈接]
樓主: 贊美
21#
發(fā)表于 2025-3-25 04:01:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:49:25 | 只看該作者
Einführung in die chemische Physiologien define a generalized Gauss map. In many cases properties of submanifolds are characterized by their Gauss maps and closely link with the theory of harmonic maps. We now present some results in this direction.
23#
發(fā)表于 2025-3-25 14:19:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:41:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:36:57 | 只看該作者
Die Kategorien und das Codieren von Texten,An important topic in the theory of harmonic maps is its complex geometry aspects. We first show that holomorphic maps are specific harmonic maps, and then prove the holomorphicity theorems of certain harmonic maps.
26#
發(fā)表于 2025-3-26 02:11:50 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:10 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:17 | 只看該作者
Die Kategorien und das Codieren von Texten,he direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained by R. Schoen-K. Uhlenbeck [S-U1] and M. Giaquinta-E. Giusti [G-G]. Later, R. Hardt and F. Lin proved partial regularity for .-harmonic maps [H-L].
30#
發(fā)表于 2025-3-26 18:25:14 | 只看該作者
Existence, Nonexistence and Regularity,he direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained by R. Schoen-K. Uhlenbeck [S-U1] and M. Giaquinta-E. Giusti [G-G]. Later, R. Hardt and F. Lin proved partial regularity for .-harmonic maps [H-L].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云和县| 平潭县| 万山特区| 灵武市| 酒泉市| 含山县| 历史| 淄博市| 家居| 长治市| 鱼台县| 临夏县| 温宿县| 项城市| 卫辉市| 宁河县| 韩城市| 台前县| 闽侯县| 吕梁市| 新竹县| 虞城县| 澳门| 澳门| 甘南县| 台东市| 淮滨县| 吴忠市| 崇左市| 大关县| 白山市| 沂南县| 绥化市| 宁蒗| 侯马市| 鹤庆县| 巢湖市| 万宁市| 鄯善县| 玛曲县| 康平县|