找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Harmonic Maps; Yuanlong Xin Book 1996 Birkh?user Boston 1996 Boundary value problem.Geometry.Maps.Minkowski space.cls.manifold

[復(fù)制鏈接]
樓主: 贊美
21#
發(fā)表于 2025-3-25 04:01:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:49:25 | 只看該作者
Einführung in die chemische Physiologien define a generalized Gauss map. In many cases properties of submanifolds are characterized by their Gauss maps and closely link with the theory of harmonic maps. We now present some results in this direction.
23#
發(fā)表于 2025-3-25 14:19:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:41:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:36:57 | 只看該作者
Die Kategorien und das Codieren von Texten,An important topic in the theory of harmonic maps is its complex geometry aspects. We first show that holomorphic maps are specific harmonic maps, and then prove the holomorphicity theorems of certain harmonic maps.
26#
發(fā)表于 2025-3-26 02:11:50 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:10 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:17 | 只看該作者
Die Kategorien und das Codieren von Texten,he direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained by R. Schoen-K. Uhlenbeck [S-U1] and M. Giaquinta-E. Giusti [G-G]. Later, R. Hardt and F. Lin proved partial regularity for .-harmonic maps [H-L].
30#
發(fā)表于 2025-3-26 18:25:14 | 只看該作者
Existence, Nonexistence and Regularity,he direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained by R. Schoen-K. Uhlenbeck [S-U1] and M. Giaquinta-E. Giusti [G-G]. Later, R. Hardt and F. Lin proved partial regularity for .-harmonic maps [H-L].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金坛市| 沅江市| 余庆县| 甘肃省| 桂东县| 颍上县| 牙克石市| 青州市| 昌乐县| 黄浦区| 天台县| 右玉县| 扎鲁特旗| 出国| 太谷县| 大竹县| 班戈县| 东莞市| 南安市| 通化县| 邢台市| 宁波市| 离岛区| 鄂伦春自治旗| 兴化市| 宝兴县| 哈巴河县| 太和县| 井冈山市| 沾益县| 武陟县| 庆阳市| 库尔勒市| 芮城县| 哈尔滨市| 廉江市| 永德县| 栾川县| 平舆县| 闵行区| 五家渠市|