找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Digital Spaces; Gabor T. Herman Textbook 1998 Birkh?user Boston 1998 Connected space.Geometry.Graph.Graph theory.Sim.Spaces.al

[復(fù)制鏈接]
樓主: GLOAT
11#
發(fā)表于 2025-3-23 13:03:58 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:13 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:21 | 只看該作者
14#
發(fā)表于 2025-3-23 22:20:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:02 | 只看該作者
Cloning Flies on Sugar Cubes,, a computerized tomography (CT) scanner estimates the X-ray attenuation coefficient inside a human body at points of a three-dimensional rectangular grid. When displaying the results of such an estimation, we usually use a sequence of two-dimensional images, such as those shown in Figure 1.1.1. In
16#
發(fā)表于 2025-3-24 10:22:14 | 只看該作者
17#
發(fā)表于 2025-3-24 13:03:15 | 只看該作者
Digital Spaces, motivation comes from practical applications in which boundaries need to be identified in multidimensional data sets with the further aim of displaying them on a computer screen (see Figure 1.1.3). Our definitions are biased towards such applications. One of our aims is to characterize surfaces wit
18#
發(fā)表于 2025-3-24 16:12:59 | 只看該作者
Topological Digital Spaces,ter justifies for mathematicians the approach that we have decided to take and discusses its relationship to some other possible mathematical approaches. So if you are happy with the way we are doing things and you do not particularly desire to learn more about mathematics than what is absolutely ne
19#
發(fā)表于 2025-3-24 19:27:34 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:05 | 只看該作者
Jordan Graphs,ll 1-simply connected digital spaces are in this category, including by Theorem 6.4.5 (. , α.), (. ,δ.), (. , κ.), (. , ε.) (for any .-dimensional direction vector .) and, when . ≥ 2, (. , β.), for any .-dimensional sign function .. That the digital spaces of this last kind have the stated property
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武功县| 郑州市| 原平市| 武陟县| 榆社县| 道真| 玉田县| 呼伦贝尔市| 莱西市| 恩施市| 昌江| 文山县| 沂水县| 固原市| 普兰店市| 临沧市| 舟曲县| 屏南县| 定日县| 牙克石市| 芒康县| 石台县| 梁河县| 阿图什市| 固原市| 邻水| 晴隆县| 军事| 临潭县| 会同县| 改则县| 奉节县| 什邡市| 绥芬河市| 金坛市| 石河子市| 祁阳县| 新巴尔虎右旗| 墨竹工卡县| 平邑县| 嘉黎县|