找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg N. Karpenkov Textbook 2022Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2022

[復(fù)制鏈接]
樓主: 詞源法
41#
發(fā)表于 2025-3-28 18:08:11 | 只看該作者
42#
發(fā)表于 2025-3-28 18:48:27 | 只看該作者
43#
發(fā)表于 2025-3-29 00:58:48 | 只看該作者
44#
發(fā)表于 2025-3-29 04:37:37 | 只看該作者
Extended Integer Angles and Their SummationLet us start with the following question. Suppose that we have arbitrary numbers ., ., and . satisfying.
45#
發(fā)表于 2025-3-29 07:23:33 | 只看該作者
Integer Angles of Polygons and Global Relations for Toric SingularitiesIn Chap. . we proved a necessary and sufficient criterion for a triple of integer angles to be the angles of some integer triangle. In this chapter we prove the analogous statement for the integer angles of convex polygons. Further, we discuss an application of these two statements to the theory of complex projective toric surfaces.
46#
發(fā)表于 2025-3-29 11:30:08 | 只看該作者
https://doi.org/10.1007/978-3-0348-5874-8or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions. For more details on the classical theory of continued fractions we refer the reader to.
47#
發(fā)表于 2025-3-29 19:27:31 | 只看該作者
48#
發(fā)表于 2025-3-29 20:36:51 | 只看該作者
49#
發(fā)表于 2025-3-30 00:29:43 | 只看該作者
50#
發(fā)表于 2025-3-30 06:06:25 | 只看該作者
Classical Notions and Definitionsor infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions. For more details on the classical theory of continued fractions we refer the reader to.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲麻莱县| 扶风县| 正定县| 瑞昌市| 会泽县| 安吉县| 临泽县| 容城县| 临城县| 余干县| 上高县| 浦东新区| 岢岚县| 三河市| 聊城市| 周宁县| 土默特右旗| 麦盖提县| 淮南市| 玉屏| 遵义县| 奎屯市| 洛扎县| 怀远县| 江城| 冷水江市| 宽城| 沙洋县| 新疆| 宜兰市| 天长市| 闽清县| 沙坪坝区| 方山县| 桦南县| 五台县| 盐边县| 万州区| 正安县| 罗江县| 思茅市|