找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg N. Karpenkov Textbook 2022Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2022

[復(fù)制鏈接]
樓主: 詞源法
21#
發(fā)表于 2025-3-25 03:47:09 | 只看該作者
Zeitstetige Zinsstrukturmodelle,ger angles, constructing a certain integer broken line called the . of an angle. We combine the integer invariants of a sail into a sequence of positive integers called an .. From one side, the notion of LLS sequence extends the notion of continued fraction (see Remark 4.8), about which we will say
22#
發(fā)表于 2025-3-25 10:53:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:06:13 | 只看該作者
Einführung in die Strukturdynamik (excluding the origin). In this chapter we briefly discuss this classical subject, focusing on the discrete Markov spectrum that has the most relevant connection to geometry of continued fractions. We conclude this chapter with the notion of Markov—Davenport characteristic that we use later in the
24#
發(fā)表于 2025-3-25 17:08:12 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:41 | 只看該作者
Oleg N. KarpenkovNew approach to the geometry of numbers, very visual and algorithmic.Numerous illustrations and examples.Problems for each chapter
26#
發(fā)表于 2025-3-26 01:38:41 | 只看該作者
27#
發(fā)表于 2025-3-26 06:28:47 | 只看該作者
Einführung in die StrukturdynamikIn this chapter we set a more general definition of geometric continued fractions, which is related to the arrangements of pairs of distinct lines passing through the origin (see section 8.1 for basic definitions).
28#
發(fā)表于 2025-3-26 08:35:43 | 只看該作者
Einführung in die Str?mungsmaschinenThere are several ways to construct reduced matrices, however as a rule they are closely related with each other. The reason for that might be the structure of the group. We should mention that the approach here is rather different to the classical approach for closed fields via Jordan blocks.
29#
發(fā)表于 2025-3-26 14:40:11 | 只看該作者
,Kavitations- und überschallgefahr,In this chapter we study the structure of the conjugacy classes of GL(2, .). Recall that GL(2, .) is the group of all invertible matrices with integer coefficients. The group GL(2, .) has another commonly used notation: ., indicating that all matrices of the group has determinants equal either to 1 or to ?1.
30#
發(fā)表于 2025-3-26 18:58:21 | 只看該作者
Einführung in die Str?mungsmaschinenThe aim of this chapter is to study questions related to the periodicity of geometric and regular continued fractions. The main object here is to prove Lagrange’s theorem stating that every quadratic irrationality has a periodic continued fraction, conversely that every periodic continued fraction is a quadratic irrationality.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井研县| 云安县| 永丰县| 永春县| 班玛县| 栾城县| 锦屏县| 英德市| 渭南市| 永州市| 将乐县| 周宁县| 上饶市| 枣强县| 华阴市| 永安市| 都匀市| 北宁市| 东丽区| 湘潭市| 通州区| 衡山县| 西丰县| 陕西省| 肥城市| 土默特右旗| 泸溪县| 辽中县| 乐昌市| 关岭| 庆云县| 岚皋县| 上虞市| 昌平区| 顺义区| 象山县| 雷山县| 易门县| 贡山| 界首市| 聂荣县|