找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of CR-Submanifolds; Aurel Bejancu Book 1986 D. Reidel Publishing Company, Dordrecht, Holland 1986 Riemannian manifold.curvature.m

[復(fù)制鏈接]
查看: 51178|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:30:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry of CR-Submanifolds
編輯Aurel Bejancu
視頻videohttp://file.papertrans.cn/384/383798/383798.mp4
叢書名稱Mathematics and its Applications
圖書封面Titlebook: Geometry of CR-Submanifolds;  Aurel Bejancu Book 1986 D. Reidel Publishing Company, Dordrecht, Holland 1986 Riemannian manifold.curvature.m
描述Approach your problems from the right end It isn‘t that they can‘t see the solution. It is and begin with the answers. Then one day, that they can‘t see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father ‘The Hermit Clad in Crane Feathers‘ in R. Brown ‘The point of a Pin‘. van Gulik‘s The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non- trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are
出版日期Book 1986
關(guān)鍵詞Riemannian manifold; curvature; manifold
版次1
doihttps://doi.org/10.1007/978-94-009-4604-0
isbn_softcover978-94-010-8545-8
isbn_ebook978-94-009-4604-0Series ISSN 0169-507X
issn_series 0169-507X
copyrightD. Reidel Publishing Company, Dordrecht, Holland 1986
The information of publication is updating

書目名稱Geometry of CR-Submanifolds影響因子(影響力)




書目名稱Geometry of CR-Submanifolds影響因子(影響力)學(xué)科排名




書目名稱Geometry of CR-Submanifolds網(wǎng)絡(luò)公開度




書目名稱Geometry of CR-Submanifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of CR-Submanifolds被引頻次




書目名稱Geometry of CR-Submanifolds被引頻次學(xué)科排名




書目名稱Geometry of CR-Submanifolds年度引用




書目名稱Geometry of CR-Submanifolds年度引用學(xué)科排名




書目名稱Geometry of CR-Submanifolds讀者反饋




書目名稱Geometry of CR-Submanifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:10 | 只看該作者
https://doi.org/10.1007/978-3-642-71770-3act manifolds (see Blair [3],p. 62) are examples of ~R-manifolds. Non-trivial CRmanifolds appeared as boundaries of domains in complex spaces, which in fact are real hypersurfaces (i.e.,particular CR-submanifolds).
板凳
發(fā)表于 2025-3-22 03:14:44 | 只看該作者
CR-Structures and Pseudo-Conformal, Mappings,act manifolds (see Blair [3],p. 62) are examples of ~R-manifolds. Non-trivial CRmanifolds appeared as boundaries of domains in complex spaces, which in fact are real hypersurfaces (i.e.,particular CR-submanifolds).
地板
發(fā)表于 2025-3-22 04:49:18 | 只看該作者
Paul Heinrich Heckmann,Elmar Tr?bert class C.. Denote by {U; x.} a system of coordinate neighborhoods on N, where U is a neighborhood and x. are local coordinates in U, with the indices h, i, j, k, ... taking on values in the range {i, ... , n}. TN and F(N) are respectively the tangent bundle to N and the algebra of differentiable fun
5#
發(fā)表于 2025-3-22 11:26:33 | 只看該作者
https://doi.org/10.1007/978-3-642-71770-3act manifolds (see Blair [3],p. 62) are examples of ~R-manifolds. Non-trivial CRmanifolds appeared as boundaries of domains in complex spaces, which in fact are real hypersurfaces (i.e.,particular CR-submanifolds).
6#
發(fā)表于 2025-3-22 13:09:56 | 只看該作者
7#
發(fā)表于 2025-3-22 20:08:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:38 | 只看該作者
Zur Geschichte der Spieltheorie,Let N be a n-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g. LetH be a real m-dimensional Riemannian manifold isometrically immersed in N.
9#
發(fā)表于 2025-3-23 02:40:58 | 只看該作者
Let N be a real (2n + l)-dimensional almost contact metric manifold with structure tensors (φ, ξ, n, g), where φ is atensor field of type (1, 1),ξ is a vector field,n, is a1-form and g is a Riemannian metric on N. These tensor fields are related by (see §of Chapter I). for any vector fields X, Y tangent to N.
10#
發(fā)表于 2025-3-23 05:44:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽阳县| 南江县| 内江市| 平乡县| 洛阳市| 松阳县| 东光县| 固镇县| 廉江市| 阿坝| 栖霞市| 普安县| 留坝县| 大荔县| 大理市| 常德市| 蓬莱市| 中宁县| 九龙坡区| 长葛市| 云和县| 台湾省| 赤峰市| 凯里市| 双鸭山市| 北宁市| 布拖县| 大石桥市| 通江县| 吴旗县| 宁波市| 镇坪县| 屯留县| 中山市| 偃师市| 平原县| 康马县| 博湖县| 清水河县| 响水县| 宁乡县|