找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems; Ioana Cioranescu Book 1990 Kluwer Academic Publishers 1990 Cauchy prob

[復(fù)制鏈接]
查看: 53982|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:28:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems
編輯Ioana Cioranescu
視頻videohttp://file.papertrans.cn/384/383796/383796.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems;  Ioana Cioranescu Book 1990 Kluwer Academic Publishers 1990 Cauchy prob
出版日期Book 1990
關(guān)鍵詞Cauchy problem; Finite; Hilbert space; boundary element method; character; feedback; form; geometry; mapping
版次1
doihttps://doi.org/10.1007/978-94-009-2121-4
isbn_softcover978-94-010-7454-4
isbn_ebook978-94-009-2121-4
copyrightKluwer Academic Publishers 1990
The information of publication is updating

書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems影響因子(影響力)




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems影響因子(影響力)學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems網(wǎng)絡(luò)公開度




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems被引頻次




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems被引頻次學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems年度引用




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems年度引用學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems讀者反饋




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:39 | 只看該作者
https://doi.org/10.1007/978-3-663-01878-0 a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
板凳
發(fā)表于 2025-3-22 02:37:05 | 只看該作者
https://doi.org/10.1007/978-3-663-01878-0 a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
地板
發(fā)表于 2025-3-22 07:40:33 | 只看該作者
On the Topological Degree in Finite and Infinite Dimensions, a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
5#
發(fā)表于 2025-3-22 10:22:15 | 只看該作者
https://doi.org/10.1007/978-94-009-2121-4Cauchy problem; Finite; Hilbert space; boundary element method; character; feedback; form; geometry; mapping
6#
發(fā)表于 2025-3-22 13:00:05 | 只看該作者
978-94-010-7454-4Kluwer Academic Publishers 1990
7#
發(fā)表于 2025-3-22 19:12:15 | 只看該作者
8#
發(fā)表于 2025-3-23 00:50:21 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:09 | 只看該作者
Analyse und Synthese von Schaltungen,In this chapter we shall characterize some classes of Banach spaces, among which strictly convex spaces, uniformly convex spaces and reflexive Banach spaces in terms of properties of the duality mapping such as continuity, injectivity or surjectivity. Some applications to L. and 1. spaces are given.
10#
發(fā)表于 2025-3-23 06:31:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
科技| 新乐市| 金阳县| 镇宁| 嘉善县| 深州市| 秭归县| 武威市| 新蔡县| 陈巴尔虎旗| 伊宁市| 彰化县| 沙河市| 岑巩县| 宁强县| 绵竹市| 灵山县| 正定县| 家居| 东乡县| 武山县| 西华县| 山阴县| 麻阳| 山东| 黄平县| 巴彦淖尔市| 滨海县| 乐都县| 清涧县| 青浦区| 达日县| 台前县| 乐都县| 玉林市| 定远县| 新和县| 卢湾区| 通许县| 荥经县| 定边县|