找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume II with a con Enrico Arbarello,Maurizio Cornalba,Phillip A. Grif Textbook 2011 Springer-Verlag Berlin

[復(fù)制鏈接]
查看: 12462|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:02:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometry of Algebraic Curves
副標(biāo)題Volume II with a con
編輯Enrico Arbarello,Maurizio Cornalba,Phillip A. Grif
視頻videohttp://file.papertrans.cn/384/383795/383795.mp4
概述Written by experts who have actively participated in the development of the Geometry of Algebraic Curves.Long expected second volume.As with the first volume (Grundlehren volume 267), it is expected t
叢書(shū)名稱(chēng)Grundlehren der mathematischen Wissenschaften
圖書(shū)封面Titlebook: Geometry of Algebraic Curves; Volume II with a con Enrico Arbarello,Maurizio Cornalba,Phillip A. Grif Textbook 2011 Springer-Verlag Berlin
描述.The second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material is of value to students who wish to learn the subject and to experts as a reference source. .The first volume appeared 1985 as vol. 267 of the same series..
出版日期Textbook 2011
關(guān)鍵詞14xx, 32xx, 30xx, 57xx, 05xx; Brill-Noether theory; Hilbert scheme and Kuranishi family; Teichmüller sp
版次1
doihttps://doi.org/10.1007/978-3-540-69392-5
isbn_softcover978-3-662-50620-2
isbn_ebook978-3-540-69392-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

書(shū)目名稱(chēng)Geometry of Algebraic Curves影響因子(影響力)




書(shū)目名稱(chēng)Geometry of Algebraic Curves影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometry of Algebraic Curves網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometry of Algebraic Curves網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometry of Algebraic Curves被引頻次




書(shū)目名稱(chēng)Geometry of Algebraic Curves被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometry of Algebraic Curves年度引用




書(shū)目名稱(chēng)Geometry of Algebraic Curves年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometry of Algebraic Curves讀者反饋




書(shū)目名稱(chēng)Geometry of Algebraic Curves讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:27:35 | 只看該作者
Cellular decomposition of moduli spaces,the action of the Teichmüller modular group. We then extend this decomposition to the bordification of Teichmüller space introduced in Chapter XV. By equivariance, this provides orbicellular decompositions of the moduli spaces of pointed Riemann surfaces and of suitable compactifications.
板凳
發(fā)表于 2025-3-22 02:06:00 | 只看該作者
First consequences of the cellular decomposition,omology of moduli of smooth and stable curves. Based on the cellular decomposition, and following Kontsevich, we then give combinatorial expressions for the classes of the point bundles and for a volume form on moduli, which are both of central importance in the next chapter.
地板
發(fā)表于 2025-3-22 06:39:06 | 只看該作者
,Ausblick auf weitere Zusammenh?nge,zation for families of nodal curves. We close the chapter by studying the topology of families of smooth curves degenerating to curves with nodes, and in particular by discussing, in this context, vanishing cycles and the Picard–Lefschetz transformation.
5#
發(fā)表于 2025-3-22 10:24:59 | 只看該作者
Regelung mit einem Integralregler (I)to find numerical inequalities among cycles in moduli spaces and, consequently, positivity results. Using the same techniques, we then prove the ampleness of Mumford’s class .., and hence the projectivity of ..
6#
發(fā)表于 2025-3-22 15:30:34 | 只看該作者
7#
發(fā)表于 2025-3-22 20:33:29 | 只看該作者
Einführung in die Regelungstechniksible covers, we then treat the quotient representation of the compactified moduli spaces. In this case, in order to prove that the variety . is smooth at points of its boundary, the fundamental tool is the Picard–Lefschetz theory and the study of the local monodromy action.
8#
發(fā)表于 2025-3-22 23:33:51 | 只看該作者
Einführung in die R?ntgenfeinstrukturanalyseof Witten’s conjecture. Following a brief review of equivariant cohomology, we then present Harer and Zagier’s computation of the virtual Euler–Poincaré characteristics of moduli spaces of smooth curves. We end the chapter with a very quick tour of Gromov–Witten invariants.
9#
發(fā)表于 2025-3-23 02:47:32 | 只看該作者
Nodal curves,zation for families of nodal curves. We close the chapter by studying the topology of families of smooth curves degenerating to curves with nodes, and in particular by discussing, in this context, vanishing cycles and the Picard–Lefschetz transformation.
10#
發(fā)表于 2025-3-23 06:58:04 | 只看該作者
Projectivity of the moduli space of stable curves,to find numerical inequalities among cycles in moduli spaces and, consequently, positivity results. Using the same techniques, we then prove the ampleness of Mumford’s class .., and hence the projectivity of ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭山县| 天台县| 苍山县| 长武县| 柘城县| 确山县| 繁昌县| 大埔县| 澄城县| 乐亭县| 九龙城区| 黔江区| 南宫市| 顺昌县| 芮城县| 齐齐哈尔市| 深圳市| 若尔盖县| 云和县| 得荣县| 东乌珠穆沁旗| 阜城县| 玉林市| 化德县| 南投市| 永修县| 从化市| 镇雄县| 青岛市| 梨树县| 田东县| 丹东市| 来凤县| 乌兰县| 炎陵县| 阳江市| 郴州市| 含山县| 老河口市| 博爱县| 镇江市|