找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume I E. Arbarello,M. Cornalba,J. Harris Textbook 1985 Springer-Verlag New York 1985 Algebraic.Curves.Geom

[復(fù)制鏈接]
樓主: Opulent
21#
發(fā)表于 2025-3-25 07:02:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:10 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:20 | 只看該作者
The Basic Results of the Brill-Noether Theory,o describe how the projective realizations of a curve vary with its moduli, and what it means, from this point of view, to say that a curve is “general” or “special.” Accordingly, we would like to know, first of all, what linear series can we expect to find on a general curve and, secondly, what the
24#
發(fā)表于 2025-3-25 16:17:00 | 只看該作者
,The Geometric Theory of Riemann’s Theta Function, important cases of them were classically known and, in a sense, provided a motivation for the entire theory. What we have in mind here are the classical theorems concerning the geometry of ..(.), that is, the geometry of Riemann’s theta function. Of course, these results are more than mere exemplif
25#
發(fā)表于 2025-3-25 22:16:50 | 只看該作者
Enumerative Geometry of Curves,merative problems that arise in the theory of curves and linear systems. While this is in some sense a quantitative approach, qualitative results may also emerge. For example, the answer to the enumerative question: “How many ..’s does a curve . possess” (Theorem (4.4) in Chapter VII) implies the ex
26#
發(fā)表于 2025-3-26 02:40:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 正宁县| 陕西省| 安庆市| 齐齐哈尔市| 宿松县| 岢岚县| 房产| 临江市| 大姚县| 信阳市| 米林县| 南平市| 威宁| 政和县| 绥阳县| 西林县| 会同县| 乌海市| 鄄城县| 平安县| 克什克腾旗| 顺昌县| 滨海县| 龙岩市| 高平市| 金山区| 兴山县| 礼泉县| 出国| 庐江县| 沂水县| 毕节市| 子洲县| 定兴县| 崇文区| 兰州市| 普洱| 三亚市| 亚东县| 榆树市|