找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume I E. Arbarello,M. Cornalba,J. Harris Textbook 1985 Springer-Verlag New York 1985 Algebraic.Curves.Geom

[復制鏈接]
樓主: Opulent
21#
發(fā)表于 2025-3-25 07:02:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:10 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:20 | 只看該作者
The Basic Results of the Brill-Noether Theory,o describe how the projective realizations of a curve vary with its moduli, and what it means, from this point of view, to say that a curve is “general” or “special.” Accordingly, we would like to know, first of all, what linear series can we expect to find on a general curve and, secondly, what the
24#
發(fā)表于 2025-3-25 16:17:00 | 只看該作者
,The Geometric Theory of Riemann’s Theta Function, important cases of them were classically known and, in a sense, provided a motivation for the entire theory. What we have in mind here are the classical theorems concerning the geometry of ..(.), that is, the geometry of Riemann’s theta function. Of course, these results are more than mere exemplif
25#
發(fā)表于 2025-3-25 22:16:50 | 只看該作者
Enumerative Geometry of Curves,merative problems that arise in the theory of curves and linear systems. While this is in some sense a quantitative approach, qualitative results may also emerge. For example, the answer to the enumerative question: “How many ..’s does a curve . possess” (Theorem (4.4) in Chapter VII) implies the ex
26#
發(fā)表于 2025-3-26 02:40:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
西安市| 大兴区| 内乡县| 东阿县| 宣威市| 南宫市| 曲松县| 夏津县| 壶关县| 屯门区| 鲁山县| 锦州市| 柳州市| 石楼县| 小金县| 固安县| 江安县| 宁陕县| 阳高县| 龙陵县| 长治县| 安图县| 万山特区| 军事| 邳州市| 喀喇沁旗| 剑阁县| 高尔夫| 花垣县| 略阳县| 武清区| 肥城市| 阳江市| 揭阳市| 南昌市| 贵阳市| 革吉县| 阿克陶县| 新蔡县| 大新县| 东源县|