找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume I E. Arbarello,M. Cornalba,J. Harris Textbook 1985 Springer-Verlag New York 1985 Algebraic.Curves.Geom

[復制鏈接]
樓主: Opulent
21#
發(fā)表于 2025-3-25 07:02:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:10 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:20 | 只看該作者
The Basic Results of the Brill-Noether Theory,o describe how the projective realizations of a curve vary with its moduli, and what it means, from this point of view, to say that a curve is “general” or “special.” Accordingly, we would like to know, first of all, what linear series can we expect to find on a general curve and, secondly, what the
24#
發(fā)表于 2025-3-25 16:17:00 | 只看該作者
,The Geometric Theory of Riemann’s Theta Function, important cases of them were classically known and, in a sense, provided a motivation for the entire theory. What we have in mind here are the classical theorems concerning the geometry of ..(.), that is, the geometry of Riemann’s theta function. Of course, these results are more than mere exemplif
25#
發(fā)表于 2025-3-25 22:16:50 | 只看該作者
Enumerative Geometry of Curves,merative problems that arise in the theory of curves and linear systems. While this is in some sense a quantitative approach, qualitative results may also emerge. For example, the answer to the enumerative question: “How many ..’s does a curve . possess” (Theorem (4.4) in Chapter VII) implies the ex
26#
發(fā)表于 2025-3-26 02:40:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宝坻区| 武强县| 白山市| 长宁县| 宁强县| 密云县| 高清| 历史| 永城市| 洪湖市| 泗水县| 东乌珠穆沁旗| 肇源县| 杂多县| 旅游| 蓬莱市| 霍州市| 南溪县| 崇信县| 南澳县| 隆尧县| 句容市| 开江县| 康马县| 天气| 镇赉县| 公主岭市| 渝中区| 濮阳县| 横山县| 榕江县| 临漳县| 富阳市| 永安市| 会昌县| 赤壁市| 丹江口市| 余干县| 颍上县| 黄冈市| 麻城市|