找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry in History; S. G. Dani,Athanase Papadopoulos Book 2019 Springer Nature Switzerland AG 2019 58-02, 58-03, 14-02, 53-02, 77-02, 30D

[復(fù)制鏈接]
樓主: corrupt
21#
發(fā)表于 2025-3-25 03:37:44 | 只看該作者
https://doi.org/10.1007/978-3-642-49191-7ey sound counterintuitive: . Around a decade later, M. Gromov transformed Smale’s idea in what is now known as the .-.. Here, the . stands for ...Shortly after the astonishing discovery by Smale, Thom gave a lecture in Lille (1959) announcing a theorem which would deserve to be named .. The aim of o
22#
發(fā)表于 2025-3-25 09:51:43 | 只看該作者
Einführung in die Quantenchemiedean geometry, we describe some highlights of this subject and threads of its evolution. In particular, we discuss the relationship to the subject of discrete subgroups of Lie groups. We emphasize the classification of geometric structures from the point of view of fiber spaces and the later work of
23#
發(fā)表于 2025-3-25 11:59:44 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-7975-8imensional sphere. The statements, results and problems are equivalent forms, corollaries, strengthenings of this conjecture, or problems of a more general nature such as the homeomorphism problem, the manifold recognition problem and the existence problem of some polyhedral, smooth and geometric st
25#
發(fā)表于 2025-3-25 20:59:54 | 只看該作者
Eingabe von Datenkarten (Standard-Eingabe),We consider several appearances of the notion of convexity in Greek antiquity, more specifically in mathematics and optics, in the writings of Aristotle, and in art.
26#
發(fā)表于 2025-3-26 00:32:36 | 只看該作者
27#
發(fā)表于 2025-3-26 08:17:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:48 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:56:27 | 只看該作者
Einführung in die QuantenphysikThe message of this short survey is that four-dimensional topology is very special indeed. Also, four dimensions is the place where, today, as far as topology of manifolds is concerned, more than anywhere else, there are still big questions waiting to be solved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 桑日县| 西丰县| 建昌县| 兴化市| 久治县| 台东市| 兴隆县| 涿鹿县| 眉山市| 蕲春县| 池州市| 漾濞| 凭祥市| 蛟河市| 门头沟区| 尚志市| 新龙县| 泰兴市| 万源市| 中阳县| 西峡县| 囊谦县| 尉犁县| 睢宁县| 清涧县| 柳林县| 远安县| 秦皇岛市| 济南市| 铜梁县| 大港区| 夹江县| 岱山县| 隆子县| 孝昌县| 北碚区| 桐梓县| 青铜峡市| 全南县| 柘荣县|