找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and its Applications; Vladimir Rovenski,Pawe? Walczak Conference proceedings 2014 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: Osteopenia
21#
發(fā)表于 2025-3-25 04:25:44 | 只看該作者
https://doi.org/10.1007/978-3-7091-9903-9 orthogonal to the leaf, .(., .) is the mean value of sectional curvatures over all mixed planes containing .. The flow preserves total umbilicity, total geodesy, and harmonicity of foliations. It is used to examine the question: Which foliations admit a metric with a given property of mixed section
22#
發(fā)表于 2025-3-25 08:20:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:33 | 只看該作者
Einführung in die pathologische Physiologie existing . and . jet shapes and also predicts the existence of periodic shape. However, sufficient simplifications of mathematical models of the flow details were made: the effects of the forces of surface tension of the longitudinal motion and the variability of the tangential velocity component o
24#
發(fā)表于 2025-3-25 18:49:15 | 只看該作者
https://doi.org/10.1007/978-3-7091-3516-7e value on any subset . of positive measure in [?1, 1]. Similarly, in several variables the maximum of the absolute value of a polynomial .(.) of degree . on the unit ball . can be bounded through the maximum of its absolute value on any subset . ? ... of positive .-measure ..(.). In [11] a stronger
25#
發(fā)表于 2025-3-25 23:49:13 | 只看該作者
https://doi.org/10.1007/978-3-662-25926-9In this chapter we investigate the convergence of the mean curvature flow of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we prove that the flow deforms a closed submanifold with pinching condition to a “round point” in finite time.
26#
發(fā)表于 2025-3-26 02:53:50 | 只看該作者
https://doi.org/10.1007/978-3-642-51425-8In this paper we deal with two types of questions concerning the structure of foliations (or laminations) on compact spaces:.The two questions are related by the fact that exceptional minimal sets in codimension one present stronger generic constraints.
27#
發(fā)表于 2025-3-26 06:11:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:04 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:44 | 只看該作者
Pathophysiologie der Kopfschmerzen,We show existence of cycles in some special nonlinear 4-D and 5-D dynamical systems and construct in their phase portraits invariant surfaces containing these cycles. In the 5D case, we demonstrate non-uniqueness of the cycles. Some possible mechanisms of this non-uniqueness are described as well.
30#
發(fā)表于 2025-3-26 17:23:52 | 只看該作者
Gaussian Mean Curvature Flow for Submanifolds in Space FormsIn this chapter we investigate the convergence of the mean curvature flow of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we prove that the flow deforms a closed submanifold with pinching condition to a “round point” in finite time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌都县| 勐海县| 乌拉特前旗| 陕西省| 清水县| 大足县| 晋江市| 鄂托克前旗| 舞阳县| 齐齐哈尔市| 阿克陶县| 将乐县| 康马县| 介休市| 板桥市| 芦溪县| 简阳市| 马公市| 灯塔市| 将乐县| 兴文县| 岳普湖县| 江山市| 华安县| 广宗县| 四子王旗| 尼木县| 西乌珠穆沁旗| 宜君县| 祁东县| 蒙山县| 贵定县| 澄城县| 谢通门县| 西畴县| 舒兰市| 延庆县| 理塘县| 浏阳市| 商城县| 东丰县|