找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Vision; First International Minh Nguyen,Wei Qi Yan,Harvey Ho Conference proceedings 2021 Springer Nature Switzerland AG 2021

[復(fù)制鏈接]
查看: 45557|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:20:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometry and Vision
副標(biāo)題First International
編輯Minh Nguyen,Wei Qi Yan,Harvey Ho
視頻videohttp://file.papertrans.cn/384/383786/383786.mp4
叢書(shū)名稱Communications in Computer and Information Science
圖書(shū)封面Titlebook: Geometry and Vision; First International  Minh Nguyen,Wei Qi Yan,Harvey Ho Conference proceedings 2021 Springer Nature Switzerland AG 2021
描述This book constitutes selected papers from the?First International Symposium on Geometry and Vision, ISGV 2021, held in Auckland, New Zealand, in January 2021. Due to the COVID-19 pandemic the conference was held in partially virtual format.?.The 29 papers were thoroughly reviewed and selected from 50 submissions. They cover topics in areas of digital geometry, graphics, image and video technologies, computer vision, and multimedia technologies..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; communication systems; computer networks; computer systems; computer vision; dee
版次1
doihttps://doi.org/10.1007/978-3-030-72073-5
isbn_softcover978-3-030-72072-8
isbn_ebook978-3-030-72073-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱Geometry and Vision影響因子(影響力)




書(shū)目名稱Geometry and Vision影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometry and Vision網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometry and Vision網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometry and Vision被引頻次




書(shū)目名稱Geometry and Vision被引頻次學(xué)科排名




書(shū)目名稱Geometry and Vision年度引用




書(shū)目名稱Geometry and Vision年度引用學(xué)科排名




書(shū)目名稱Geometry and Vision讀者反饋




書(shū)目名稱Geometry and Vision讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:25:22 | 只看該作者
Conference proceedings 2021ary 2021. Due to the COVID-19 pandemic the conference was held in partially virtual format.?.The 29 papers were thoroughly reviewed and selected from 50 submissions. They cover topics in areas of digital geometry, graphics, image and video technologies, computer vision, and multimedia technologies..
地板
發(fā)表于 2025-3-22 08:00:29 | 只看該作者
,Zentralit?t und Prestige in Netzwerken,without privacy protection, as current methods for privacy preservation will slow down model training and testing. In order to resolve this problem, we develop a new noise generating method based on information entropy by using differential privacy for betterment the privacy protection which owns th
5#
發(fā)表于 2025-3-22 10:44:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:09:54 | 只看該作者
,Analyse von Schalt- und übergangsvorg?ngen,s, namely, Faster R-CNN and YOLOv5, representing two-stage and one-stage algorithms, are employed to conduct tree leaves detection. Our results show that YOLOv5 model obviously outperforms to the Faster R-CNN in the speed of both model training and object detection. The difference between these two
7#
發(fā)表于 2025-3-22 17:31:58 | 只看該作者
Schleifen- und Schnittmengenanalyse, motivated researchers to design automatic diagnostic systems. Image segmentation is one of the crucial and challenging steps in the design of a computer-aided diagnosis system owing to the presence of low contrast between skin lesion and background, noise artifacts, color variations, and irregular
8#
發(fā)表于 2025-3-22 23:22:33 | 只看該作者
https://doi.org/10.1007/978-3-476-05046-5peness automatically. Apple ripeness classification is a problem in computer vision and deep learning for pattern classification. In this paper, the ripeness of apples in digital images will be classified by using convolutional neural networks (CNN or ConvNets) in deep learning. The goal of this pro
9#
發(fā)表于 2025-3-23 04:09:32 | 只看該作者
10#
發(fā)表于 2025-3-23 07:57:04 | 只看該作者
https://doi.org/10.1007/978-3-476-05191-2missed detection or incorrect positioning. In this paper, we propose a traffic sign recognition algorithm based on Faster R-CNN and YOLOv5. Firstly, we conduct image preprocessing by using guided image filtering for the input image to remove noises. The processed images are imported into the neural
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞西市| 杂多县| 饶平县| 景宁| 玉龙| 阿克| 盐源县| 从化市| 淮滨县| 敦化市| 衡山县| 临武县| 铜川市| 云梦县| 清流县| 柞水县| 含山县| 武强县| 梓潼县| 崇礼县| 县级市| 诸暨市| 玛曲县| 淳化县| 颍上县| 麻城市| 措勤县| 泊头市| 唐河县| 广宗县| 湖北省| 光山县| 浏阳市| 大兴区| 凤台县| 崇阳县| 监利县| 界首市| 无为县| 安义县| 丽江市|