找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics; Marco Pettini Book 2007 Springer-Verlag New York 2007 Dynamics.Ge

[復(fù)制鏈接]
樓主: 退縮
31#
發(fā)表于 2025-3-27 00:00:06 | 只看該作者
32#
發(fā)表于 2025-3-27 02:03:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:50:03 | 只看該作者
34#
發(fā)表于 2025-3-27 13:31:31 | 只看該作者
35#
發(fā)表于 2025-3-27 14:31:57 | 只看該作者
Topological Hypothesis on the Origin,ly singular behavior at the transition point. Moreover, we have seen that the presence of a singularity in the statistical-mechanical fluctuations of the curvature at the transition point has been proved analytically for the mean-field . model.
36#
發(fā)表于 2025-3-27 20:35:41 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:31 | 只看該作者
38#
發(fā)表于 2025-3-28 04:54:32 | 只看該作者
Introduction,hase transitions. The mathematical concepts and methods used are borrowed from Riemannian geometry and from elementary differential topology, respectively. The new approach proposed also unveils deep connections between the two mentioned topics.
39#
發(fā)表于 2025-3-28 08:40:21 | 只看該作者
Background in Physics,between them..The general problem of statistical physics is the following. Given a collection–in general a large collection–of atoms or molecules, given the interaction laws among the constituents of this collection of particles, and given the dynamical evolution laws, how can we predict the macrosc
40#
發(fā)表于 2025-3-28 14:30:46 | 只看該作者
Geometrization of Hamiltonian Dynamics, system, that is, a system of particles interacting through forces derived from a potential, i.e., of the form (1.1), belongs to this class. The trajectories of a standard system can be seen as geodesics of a suitable Riemannian manifold. This classical result is based on the variational formulation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
横峰县| 若羌县| 博湖县| 吉林市| 长垣县| 通城县| 胶州市| 衡山县| 西昌市| 利川市| 大庆市| 固阳县| 太仆寺旗| 湘乡市| 石棉县| 白玉县| 昭平县| 滨海县| 长白| 天等县| 达拉特旗| 浙江省| 枣强县| 镇远县| 仙居县| 同心县| 福安市| 富顺县| 邯郸县| 肥城市| 梁平县| 新巴尔虎左旗| 丹凤县| 扎鲁特旗| 祥云县| 柯坪县| 隆林| 香河县| 宜君县| 南宫市| 富蕴县|