找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Theoretical Physics; Joachim Debrus,Allen C. Hirshfeld Textbook 1991 Springer-Verlag Berlin Heidelberg 1991 Feldtheorie.Geome

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 03:27:17 | 只看該作者
22#
發(fā)表于 2025-3-25 09:18:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:22:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:02 | 只看該作者
,Infinite Dimensional Algebras and (2+1)-Dimensional Field Theories: Yet Another View of gl(∞); Someang-Baxter algebras [1] constitute the relevant structure underlying (1+1)-dimensional integrable models; in addition, their relation to braid groups, the theory of knots and links, and the exchange algebras of (1+1)-dimensional conformal field theories [2] is by now well understood. Secondly, defor
25#
發(fā)表于 2025-3-25 20:01:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:28:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:22:38 | 只看該作者
All Solutions of the Wess-Zumino Consistency Conditions,ibe the main algebraic tools and theorems required for this complete classification. Our results answer the question whether in nonrenormalizable gauge theories there exist additional up-to-now unknown anomalies in the negative.
28#
發(fā)表于 2025-3-26 09:10:07 | 只看該作者
Modular Invariance, Causality and the ,-Theorem,- Vilkovisky method is used to construct the corresponding field theory, and its dimensional reduction by the Parisi-Sourlas mechanism is proven. We show that a certain element in the identity component of the .(., 2) subgroup of .(., 2∣2) induces the .-transformation in the physical subspace. We cl
29#
發(fā)表于 2025-3-26 13:19:08 | 只看該作者
Knots and Their Links with Biology and Physics, such discoveries was triggered in 1984 and is still rolling. It all started with a bridge between knot theory and the theory of von Neumann algebras: the Jones polynomials. Within one year biologists recognized the usefulness of these polynomials for the classification of the enzymes transforming o
30#
發(fā)表于 2025-3-26 18:39:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉中市| 宜君县| 阿勒泰市| 斗六市| 三亚市| 宜昌市| 建瓯市| 泸水县| 昌乐县| 襄城县| 阿克陶县| 广丰县| 津市市| 海南省| 册亨县| 油尖旺区| 新建县| 沙田区| 峡江县| 阜平县| 怀宁县| 多伦县| 得荣县| 泽州县| 凯里市| 萨迦县| 锡林浩特市| 青岛市| 隆安县| 哈密市| 三都| 靖远县| 杭锦旗| 万载县| 宣武区| 屏东县| 六安市| 子长县| 尉氏县| 准格尔旗| 上蔡县|