找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Representation Theory of Real and p-adic groups; Juan Tirao,David A. Vogan,Joseph A. Wolf Textbook 1998 Birkh?user Boston 199

[復(fù)制鏈接]
樓主: Monroe
41#
發(fā)表于 2025-3-28 17:03:56 | 只看該作者
42#
發(fā)表于 2025-3-28 21:13:11 | 只看該作者
The Spherical Dual for ,-adic Groups,sible irreducible (g, .) modules in the work of Langlands, Shelstad, Knapp—Zuckerman and Vogan. In the .-adic case they play a significant role in the work of Kazhdan—Lusztig and Lusztig. There is a technical modification in that one considers maps of the Weil—Deligne—Langlands group,..
43#
發(fā)表于 2025-3-29 00:45:52 | 只看該作者
0743-1643 s, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a d978-1-4612-8681-3978-1-4612-4162-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
44#
發(fā)表于 2025-3-29 03:37:14 | 只看該作者
45#
發(fā)表于 2025-3-29 07:56:38 | 只看該作者
Finite Rank Homogeneous Holomorphic Bundles in Flag Spaces,ns for a real reductive Lie group. In the mid 1950s, Harish-Chandra realized a family of irreducible unitary representations for some semisimple groups, using the global sections of homogeneous bundles defined over Hermitian symmetric spaces [6]. At about the same time Borel and Weil constructed the
46#
發(fā)表于 2025-3-29 12:11:53 | 只看該作者
47#
發(fā)表于 2025-3-29 15:55:44 | 只看該作者
Smooth Representations of Reductive ,-adic Groups,f smooth (complex) representations of a .-adic group in terms of certain irreducible representations of compact, open subgroups. Motivation for this program comes from two special cases which may be viewed as extreme examples of what one hopes is a general phenomenon.
48#
發(fā)表于 2025-3-29 19:51:50 | 只看該作者
49#
發(fā)表于 2025-3-30 00:50:52 | 只看該作者
50#
發(fā)表于 2025-3-30 06:37:14 | 只看該作者
Flag Manifolds and Representation Theory,a, August 1995. The topics were complex flag manifolds, real group orbits, and linear cycle spaces, with applications to the geometric construction of representations of semisimple Lie groups. These topics come up in many aspects of complex differential geometry and harmonic analysis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 沁水县| 竹山县| 精河县| 深水埗区| 大渡口区| 集贤县| 永昌县| 克拉玛依市| 手游| 武宁县| 商丘市| 黄冈市| 南阳市| 内黄县| 淄博市| 江都市| 盘锦市| 吉木萨尔县| 丹凤县| 汝南县| 台湾省| 宿州市| 盈江县| 广饶县| 美姑县| 杭锦后旗| 永仁县| 灵寿县| 廉江市| 金秀| 潜山县| 桂东县| 怀集县| 高台县| 连江县| 绥滨县| 晋城| 新田县| 平果县| 光泽县|