找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Quantum Physics; Proceedings of the 3 H. Gausterer,L. Pittner,Harald Grosse Conference proceedings 2000 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 14:47:15 | 只看該作者
42#
發(fā)表于 2025-3-28 19:20:42 | 只看該作者
43#
發(fā)表于 2025-3-29 00:52:19 | 只看該作者
Anyonic Solutions to the Thirring Model,re are fermionic solutions only if the coupling constant is ., otherwise solutions are anyons. Different anyons (which are uncountably many) live in orthogonal spaces, so the whole Hilbert space becomes non-separable and in each of its sectors a different Heisenberg’s “Ungleichung” holds. This featu
44#
發(fā)表于 2025-3-29 03:32:31 | 只看該作者
Twisting of Quantum Differentials,ves rise to a new Hopf algebra . . (the twist of .) with the same unit, counit and coproduct, but modified product. We show that a bicovariant bimodule . over . can be made a bicovariant bimodule over . . by equipping it with the same coactions but modified actions. The new (twisted) left action is
45#
發(fā)表于 2025-3-29 08:56:49 | 只看該作者
46#
發(fā)表于 2025-3-29 12:08:28 | 只看該作者
47#
發(fā)表于 2025-3-29 19:30:03 | 只看該作者
https://doi.org/10.1007/978-3-322-99590-2es labeled by intertwining operators. In a ‘spin foam model’ we describe states as linear combina- tions of spin networks and compute transition amplitudes as sums over spin foams. This paper aims to provide a self-contained introduction to spin foam models of quantum gravity and a simpler field theory called . theory.
48#
發(fā)表于 2025-3-29 21:52:24 | 只看該作者
49#
發(fā)表于 2025-3-30 02:00:17 | 只看該作者
50#
發(fā)表于 2025-3-30 07:14:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴川市| 新乡县| 宾阳县| 双辽市| 丘北县| 汾西县| 方山县| 灌南县| 黑龙江省| 蒙山县| 亳州市| 军事| 同德县| 双柏县| 安义县| 普兰县| 运城市| 宜阳县| 攀枝花市| 辉南县| 海林市| 綦江县| 汾西县| 镇赉县| 新平| 通渭县| 辛集市| 报价| 敦煌市| 曲松县| 丽江市| 高州市| 溧水县| 玉龙| 县级市| 平泉县| 汉中市| 南江县| 新乡县| 榆中县| 浦城县|