找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Physics; Jürgen Jost Textbook 2009 Springer-Verlag Berlin Heidelberg 2009 Area.Quantum Field Theory.Riemannian geometry.Sigma

[復制鏈接]
查看: 17895|回復: 35
樓主
發(fā)表于 2025-3-21 16:36:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry and Physics
編輯Jürgen Jost
視頻videohttp://file.papertrans.cn/384/383772/383772.mp4
概述Very good introductory text on the interplay between geometry and physics.Includes supplementary material:
圖書封面Titlebook: Geometry and Physics;  Jürgen Jost Textbook 2009 Springer-Verlag Berlin Heidelberg 2009 Area.Quantum Field Theory.Riemannian geometry.Sigma
描述."Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective..
出版日期Textbook 2009
關鍵詞Area; Quantum Field Theory; Riemannian geometry; Sigma model; Supersymmetry; manifold
版次1
doihttps://doi.org/10.1007/978-3-642-00541-1
isbn_softcover978-3-642-42070-2
isbn_ebook978-3-642-00541-1
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Geometry and Physics影響因子(影響力)




書目名稱Geometry and Physics影響因子(影響力)學科排名




書目名稱Geometry and Physics網絡公開度




書目名稱Geometry and Physics網絡公開度學科排名




書目名稱Geometry and Physics被引頻次




書目名稱Geometry and Physics被引頻次學科排名




書目名稱Geometry and Physics年度引用




書目名稱Geometry and Physics年度引用學科排名




書目名稱Geometry and Physics讀者反饋




書目名稱Geometry and Physics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:37:06 | 只看該作者
Statisch unbestimmte Tragwerke,al geometry as expressed through the tensor calculus is about coordinate representations of geometric objects and the transformations of those representations under coordinate changes. The geometric objects are invariantly defined, but their coordinate representations are not, and resolving this contradiction is the content of the tensor calculus.
板凳
發(fā)表于 2025-3-22 01:30:50 | 只看該作者
Textbook 2009ion to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also de
地板
發(fā)表于 2025-3-22 04:57:45 | 只看該作者
ts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective..978-3-642-42070-2978-3-642-00541-1
5#
發(fā)表于 2025-3-22 09:17:34 | 只看該作者
6#
發(fā)表于 2025-3-22 12:55:23 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:44 | 只看該作者
8#
發(fā)表于 2025-3-22 22:33:48 | 只看該作者
978-3-642-42070-2Springer-Verlag Berlin Heidelberg 2009
9#
發(fā)表于 2025-3-23 03:19:13 | 只看該作者
Statisch unbestimmte Tragwerke,he proofs of various results, we refer to J.?Jost (Riemannian Geometry and Geometric Analysis, 5th edn., Springer, Berlin, 2008). Classical differential geometry as expressed through the tensor calculus is about coordinate representations of geometric objects and the transformations of those represe
10#
發(fā)表于 2025-3-23 06:54:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 15:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
松潘县| 灵石县| 永福县| 灵寿县| 探索| 汉沽区| 西平县| 绥德县| 额济纳旗| 金堂县| 马山县| 沂水县| 南陵县| 中方县| 靖州| 巴马| 怀化市| 石城县| 东阳市| 兰溪市| 于田县| 札达县| 筠连县| 苍山县| 红原县| 新民市| 石台县| 西乌珠穆沁旗| 宁河县| 安阳市| 盘山县| 宣城市| 大余县| 大方县| 金坛市| 界首市| 城口县| 平阴县| 建瓯市| 芦溪县| 资溪县|