找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis on Manifolds; In Memory of Profess Takushiro Ochiai,Toshiki Mabuchi,Alan Weinstein Book 2015 Springer International P

[復制鏈接]
樓主: 方言
41#
發(fā)表于 2025-3-28 15:21:15 | 只看該作者
https://doi.org/10.1007/978-3-662-01400-4We present a moving frames proof, with motivation and context, that all nonumbilic Dupin immersions of a surface are Lie sphere congruent to each other.
42#
發(fā)表于 2025-3-28 22:42:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:50:57 | 只看該作者
44#
發(fā)表于 2025-3-29 06:34:15 | 只看該作者
A Lemma on Hartogs Function and Application to Levi Flat Hypersurfaces in Hopf SurfacesThe Levi form of the Hartogs function is computed for the domains with Levi flat boundary. The result is applied to the classification of Levi flat hypersurfaces in Hopf surfaces.
45#
發(fā)表于 2025-3-29 07:16:46 | 只看該作者
46#
發(fā)表于 2025-3-29 15:26:19 | 只看該作者
Geometry and Arithmetic on the Siegel–Jacobi SpaceThe Siegel–Jacobi space is a non–symmetric homogeneous space which is very important geometrically and arithmetically. In this paper, we discuss the theory of the geometry and the arithmetic of the Siegel–Jacobi space.
47#
發(fā)表于 2025-3-29 17:51:13 | 只看該作者
48#
發(fā)表于 2025-3-29 23:26:26 | 只看該作者
Dupin Hypersurfaces in Lie Sphere GeometryWe present a moving frames proof, with motivation and context, that all nonumbilic Dupin immersions of a surface are Lie sphere congruent to each other.
49#
發(fā)表于 2025-3-30 00:13:00 | 只看該作者
Takushiro Ochiai,Toshiki Mabuchi,Alan WeinsteinPresents lectures on recent topics in complex geometry and complex analysis for young researchers.Broadens your insight on merging geometry and analysis on manifolds.Provides a comprehensive list of S
50#
發(fā)表于 2025-3-30 06:59:49 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 02:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岳普湖县| 理塘县| 尚义县| 西华县| 蒙城县| 宝丰县| 福州市| 岢岚县| 绩溪县| 若尔盖县| 延长县| 沂南县| 齐齐哈尔市| 灵宝市| 忻州市| 洪雅县| 武平县| 读书| 桐梓县| 深州市| 揭阳市| 江城| 米易县| 区。| 永康市| 阿瓦提县| 海门市| 得荣县| 松潘县| 贵德县| 西丰县| 安吉县| 廉江市| 南溪县| 马山县| 宁乡县| 云梦县| 平江县| 大余县| 宜都市| 京山县|