找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis on Manifolds; Proceedings of the 2 Toshikazu Sunada Conference proceedings 1988 Springer-Verlag Berlin Heidelberg 198

[復(fù)制鏈接]
樓主: 重婚
11#
發(fā)表于 2025-3-23 10:47:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:33 | 只看該作者
Conference proceedings 1988s, especially spectral analysis on noncompact manifolds. Included in the present volume are expanded versions of most of the invited lectures. In these original research articles, the reader will find up-to date accounts of the subject.
13#
發(fā)表于 2025-3-23 18:11:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:12:34 | 只看該作者
https://doi.org/10.1007/BFb0083042Eigenvalue; calculus; curvature; differential equation; manifold; minimum
15#
發(fā)表于 2025-3-24 02:32:48 | 只看該作者
,Einige h?ufig angewandte Tragwerksysteme,he operator theory on graphs and operator theory on manifolds. This has lead to a complete solution of the original problem in dimension greater than 2. The case of Dimension 2 is still open, but the conjecture mentioned above is an aim to reach..Many other problems are left in connection to what ha
16#
發(fā)表于 2025-3-24 09:53:07 | 只看該作者
Wolfgang Weber,Rüdiger Kabst,Matthias Baum?(det .).) vanish if . is positive in the sense of Griffiths and .+.≥.+1, .≥.+.. The proof rests on the wellknown fact that every tensor power .. splits into irreducible representations of Gl(.), each component being canonically isomorphic to the direct image on . of a positive homogeneous line bund
17#
發(fā)表于 2025-3-24 11:31:49 | 只看該作者
Conference proceedings 1988s, especially spectral analysis on noncompact manifolds. Included in the present volume are expanded versions of most of the invited lectures. In these original research articles, the reader will find up-to date accounts of the subject.
18#
發(fā)表于 2025-3-24 15:19:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:01 | 只看該作者
20#
發(fā)表于 2025-3-25 01:06:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射阳县| 疏附县| 漳州市| 得荣县| 稷山县| 油尖旺区| 和顺县| 峨山| 连城县| 玛纳斯县| 新河县| 张家界市| 来安县| 雷山县| 宁安市| 新乡市| 钦州市| 工布江达县| 蕉岭县| 彝良县| 葵青区| 岗巴县| 舟曲县| 丰城市| 双辽市| 新昌县| 吉安县| 清河县| 正蓝旗| 东丰县| 兴海县| 乌什县| 定边县| 大姚县| 万州区| 沽源县| 扎赉特旗| 铜山县| 尚志市| 和龙市| 顺昌县|