找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian

[復(fù)制鏈接]
樓主: ominous
31#
發(fā)表于 2025-3-26 22:50:29 | 只看該作者
32#
發(fā)表于 2025-3-27 03:38:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:27:39 | 只看該作者
34#
發(fā)表于 2025-3-27 12:36:36 | 只看該作者
Structural Equations. Local Symmetries,As we know (see Chap. 36), instead of the curvature tensor, it is convenient to consider the ..
35#
發(fā)表于 2025-3-27 13:59:38 | 只看該作者
36#
發(fā)表于 2025-3-27 20:32:13 | 只看該作者
Lie Functor,The main goal of this chapter is to present the procedure for reconstructing a Lie group from its Lie algebra. Moreover, incidentally, we here present certain general mathematical concepts that were already mentioned repeatedly in passing.
37#
發(fā)表于 2025-3-28 01:51:21 | 只看該作者
Affine Fields and Related Topics,As Exercise 5.5 shows, Lie groups are a particular case of symmetric spaces. This gives us an idea to generalize the construction of the Lie algebra of a Lie group to symmetric spaces. This can be done, but instead of Lie algebras, we obtain more general algebraic objects, as should be expected.
38#
發(fā)表于 2025-3-28 03:53:59 | 只看該作者
Cartan Theorem,The Lie ternary . constructed in the previous chapter depends on the choice of the point .0∈., i.e., it is a function of the pair (.0). Such pairs are called .. A .: (.0) → (.0) of punctured spaces is a morphism . → . such that .(.0) = .0. It is clear that all punctured symmetric spaces and their morphisms form a category.
39#
發(fā)表于 2025-3-28 06:50:31 | 只看該作者
Metric Properties of Geodesics,For a Riemannian (but not a pseudo-Riemannian) space . along with the energy Lagrangian, we can also consider the Lagrangian. which is expressed in local coordinates by
40#
發(fā)表于 2025-3-28 13:37:14 | 只看該作者
Minimal Surfaces,We can replace the real coordinates . and . on a surface . with one complex coordinate . = . + .. In the case where the coordinates . and . are isothermal, the coordinate . is called a . on the surface. (Certain authors also apply this name to the coordinates . and ..)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田东县| 盐山县| 石狮市| 深泽县| 兴国县| 宜城市| 浠水县| 永城市| 遂溪县| 壤塘县| 芮城县| 宝丰县| 龙江县| 高邑县| 延庆县| 大同市| 无极县| 延长县| 潮安县| 沾化县| 健康| 常宁市| 蓝山县| 长乐市| 安泽县| 绿春县| 宿迁市| 沁水县| 五指山市| 曲阳县| 蓬莱市| 新津县| 定兴县| 平和县| 广德县| 芦山县| 鄂托克前旗| 抚远县| 永城市| 桑植县| 崇义县|