找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry Over Nonclosed Fields; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Conference proceedings 2017 Springer International Publishi

[復制鏈接]
查看: 22611|回復: 42
樓主
發(fā)表于 2025-3-21 19:33:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry Over Nonclosed Fields
編輯Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel
視頻videohttp://file.papertrans.cn/384/383751/383751.mp4
概述Covers exciting new research in the fields of classical algebraic geometry and arithmetic geometry.Examines recent research and results concerning K3-surfaces, including formulations of the Torelli Th
叢書名稱Simons Symposia
圖書封面Titlebook: Geometry Over Nonclosed Fields;  Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Conference proceedings 2017 Springer International Publishi
描述Based on the Simons Symposia held in 2015, the proceedings in this volume focus on rational curves on higher-dimensional algebraic varieties and applications of the theory of curves to arithmetic problems. There has been significant progress in this field with major new results, which have given new impetus to the study of rational curves and spaces of rational curves on K3 surfaces and their higher-dimensional generalizations.?One main recent insight the book covers is the?idea that the geometry of rational curves is tightly coupled to properties of derived categories of sheaves on K3 surfaces. The implementation of this idea led to proofs of long-standing conjectures concerning birational properties of holomorphic symplectic varieties, which in turn should yield new theorems in arithmetic. This proceedings volume covers these new insights in detail.?.
出版日期Conference proceedings 2017
關鍵詞algebraic geometry; rational curves; K3 surfaces; cubic four-folds; hyper-Kahler manifolds
版次1
doihttps://doi.org/10.1007/978-3-319-49763-1
isbn_softcover978-3-319-84235-6
isbn_ebook978-3-319-49763-1Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Geometry Over Nonclosed Fields影響因子(影響力)




書目名稱Geometry Over Nonclosed Fields影響因子(影響力)學科排名




書目名稱Geometry Over Nonclosed Fields網絡公開度




書目名稱Geometry Over Nonclosed Fields網絡公開度學科排名




書目名稱Geometry Over Nonclosed Fields被引頻次




書目名稱Geometry Over Nonclosed Fields被引頻次學科排名




書目名稱Geometry Over Nonclosed Fields年度引用




書目名稱Geometry Over Nonclosed Fields年度引用學科排名




書目名稱Geometry Over Nonclosed Fields讀者反饋




書目名稱Geometry Over Nonclosed Fields讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:44:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:51:54 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:16 | 只看該作者
A Stronger Derived Torelli Theorem for K3 Surfaces,hen they are isomorphic. In this paper we study more refined aspects of filtered derived equivalences related to the action on the cohomological realizations of the Mukai motive. It is shown that if a filtered derived equivalence between K3 surfaces also preserves ample cones then one can find an is
5#
發(fā)表于 2025-3-22 09:56:17 | 只看該作者
6#
發(fā)表于 2025-3-22 15:00:37 | 只看該作者
Odd-Dimensional Cohomology with Finite Coefficients and Roots of Unity,le smooth projective variety implies the existence of certain primitive roots of unity in the field of definition of the variety. This text was inspired by an exercise in Serre’s Lectures on the Mordell–Weil theorem.
7#
發(fā)表于 2025-3-22 17:57:28 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:50 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:32 | 只看該作者
Conference proceedings 2017cations of the theory of curves to arithmetic problems. There has been significant progress in this field with major new results, which have given new impetus to the study of rational curves and spaces of rational curves on K3 surfaces and their higher-dimensional generalizations.?One main recent in
10#
發(fā)表于 2025-3-23 08:31:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 21:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
讷河市| 桐乡市| 黔江区| 伊宁市| 吉木萨尔县| 彰武县| 错那县| 甘孜| 青河县| 阳泉市| 无极县| 拉孜县| 英山县| 大悟县| 安徽省| 平谷区| 盐津县| 秭归县| 甘南县| 定结县| 浙江省| 贡嘎县| 穆棱市| 宝兴县| 五台县| 竹溪县| 年辖:市辖区| 旬阳县| 临邑县| 万荣县| 临泉县| 潮州市| 论坛| 即墨市| 保靖县| 柳河县| 武义县| 武城县| 石门县| 长寿区| 洪湖市|