找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; Our Cultural Heritag Audun Holme Textbook 20021st edition Springer-Verlag Berlin Heidelberg 2002 Algebra.Apollonius.Fractal.Geome

[復(fù)制鏈接]
樓主: digestive-tract
41#
發(fā)表于 2025-3-28 17:33:42 | 只看該作者
42#
發(fā)表于 2025-3-28 19:42:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:06:45 | 只看該作者
Geometry in the Hellenistic EraAlexandria was founded where the Nile meets the Mediterranean by Alexander the Great, in the year 331 B.C. The city became the capital of Egypt, and rapidly developed into one of the richest and most beautiful cities in the world. That is to say, in the world known to the antique.
44#
發(fā)表于 2025-3-29 06:21:05 | 只看該作者
45#
發(fā)表于 2025-3-29 08:46:08 | 只看該作者
Axiomatic Projective GeometryThe axiomatic treatment of . has at its starting point three .. We are given one . ?, which we call ., and another set ? which we call .. Further, there is given a . between elements from ? and elements from ? which is denoted by ., and referred to as .. If . holds for . ∈ ? and . ∈ ?, then we say that ..
46#
發(fā)表于 2025-3-29 15:12:23 | 只看該作者
Making Things PreciseIn Section 8.3 we saw how a model for the projective plane may be constructed by taking the northern hemisphere of a spherical surface, including the equator, and then . diametrically opposite points on the equator.
47#
發(fā)表于 2025-3-29 16:54:42 | 只看該作者
Geometry in the Affine and the Projective PlaneIn this chapter we shall, among other things, prove the classical theorems of .. These theorems are valid in the projective plane ?. (?), and we shall give simple algebraic proofs, which fully take advantage of the strength inherent in ..
48#
發(fā)表于 2025-3-29 20:35:46 | 只看該作者
49#
發(fā)表于 2025-3-30 01:48:40 | 只看該作者
Higher Geometry in the Projective PlaneWe define curves in the . ?. (?) analogously to curves in the affine plane ?.. The difference is that we can not use ordinary polynomials in two variables, but have to work with . instead. We have seen this in Section 12.8, for conics.
50#
發(fā)表于 2025-3-30 05:17:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇州县| 锦屏县| 金湖县| 稷山县| 巩义市| 乐清市| 崇明县| 涿州市| 大厂| 合山市| 宾阳县| 穆棱市| 师宗县| 永泰县| 湟中县| 石渠县| 侯马市| 兴山县| 定西市| 沛县| 苏州市| 清镇市| 上虞市| 高邮市| 巫溪县| 汪清县| 临颍县| 武威市| 太原市| 逊克县| 荆门市| 荣昌县| 平果县| 射洪县| 普宁市| 都匀市| 光山县| 紫阳县| 固阳县| 吉林省| 阳春市|