找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; Michèle Audin Textbook 2003 Springer-Verlag Berlin Heidelberg 2003 51XX.53XX.Area.Euclidean geometry.conics.differential geometr

[復(fù)制鏈接]
樓主: hector
11#
發(fā)表于 2025-3-23 12:20:18 | 只看該作者
Affine Geometry,An affine space is a set of points; it contains lines, etc. and affine geometry. deals, for instance, with the relations between these points and these lines (collinear points, parallel or concurrent lines…). To define these objects and describe their relations, one can:
12#
發(fā)表于 2025-3-23 15:10:21 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:18 | 只看該作者
Euclidean Geometry in Space,In this chapter, everything will take place in a Euclidean (affine or vector) space of dimension 3.
14#
發(fā)表于 2025-3-23 23:08:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:37 | 只看該作者
Conics and Quadrics,This chapter is devoted to quadrics and especially to conics. I have tried to keep a balance between:
16#
發(fā)表于 2025-3-24 10:02:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:40 | 只看該作者
Hans-Joachim Opitz,Hasso von Wedele is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
18#
發(fā)表于 2025-3-24 15:03:12 | 只看該作者
Euclidean Geometry in the Plane,e is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
19#
發(fā)表于 2025-3-24 21:29:01 | 只看該作者
20#
發(fā)表于 2025-3-25 00:36:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青冈县| 鹰潭市| 定州市| 从化市| 湖北省| 梁河县| 宣城市| 宝坻区| 延庆县| 大渡口区| 来凤县| 阿巴嘎旗| 久治县| 公安县| 类乌齐县| 漳平市| 沙田区| 宝丰县| 朝阳区| 栾川县| 云南省| 庆元县| 全州县| 阜康市| 闽侯县| 金山区| 崇仁县| 吴江市| 牙克石市| 孝昌县| 大悟县| 南乐县| 浦城县| 富锦市| 公主岭市| 惠安县| 济阳县| 孝感市| 平和县| 天台县| 界首市|