找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; Michèle Audin Textbook 2003 Springer-Verlag Berlin Heidelberg 2003 51XX.53XX.Area.Euclidean geometry.conics.differential geometr

[復(fù)制鏈接]
樓主: hector
11#
發(fā)表于 2025-3-23 12:20:18 | 只看該作者
Affine Geometry,An affine space is a set of points; it contains lines, etc. and affine geometry. deals, for instance, with the relations between these points and these lines (collinear points, parallel or concurrent lines…). To define these objects and describe their relations, one can:
12#
發(fā)表于 2025-3-23 15:10:21 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:18 | 只看該作者
Euclidean Geometry in Space,In this chapter, everything will take place in a Euclidean (affine or vector) space of dimension 3.
14#
發(fā)表于 2025-3-23 23:08:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:37 | 只看該作者
Conics and Quadrics,This chapter is devoted to quadrics and especially to conics. I have tried to keep a balance between:
16#
發(fā)表于 2025-3-24 10:02:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:40 | 只看該作者
Hans-Joachim Opitz,Hasso von Wedele is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
18#
發(fā)表于 2025-3-24 15:03:12 | 只看該作者
Euclidean Geometry in the Plane,e is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
19#
發(fā)表于 2025-3-24 21:29:01 | 只看該作者
20#
發(fā)表于 2025-3-25 00:36:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕉岭县| 锡林郭勒盟| 崇义县| 广安市| 阿城市| 会宁县| 江山市| 丰台区| 留坝县| 沧州市| 温州市| 沾化县| 雷山县| 六盘水市| 竹北市| 兰坪| 富裕县| 体育| 文安县| 九龙城区| 卓尼县| 临高县| 南郑县| 京山县| 海城市| 新巴尔虎左旗| 涞源县| 凤阳县| 岗巴县| 天全县| 南康市| 杭锦旗| 措美县| 灵璧县| 工布江达县| 翼城县| 揭阳市| 枣强县| 汉阴县| 万山特区| 木里|