找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrodynamics of Gauge Fields; On the Geometry of Y Eckehard W. Mielke Book 2017Latest edition Springer International Publishing Switzer

[復(fù)制鏈接]
查看: 46693|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:57:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometrodynamics of Gauge Fields
副標題On the Geometry of Y
編輯Eckehard W. Mielke
視頻videohttp://file.papertrans.cn/384/383738/383738.mp4
概述A comprehensive revision of a classic text relating geometic field theory to modern physics.Offers an up-to-date overview of geometrodynamics including minimal topological models.Contains new chapters
叢書名稱Mathematical Physics Studies
圖書封面Titlebook: Geometrodynamics of Gauge Fields; On the Geometry of Y Eckehard W. Mielke Book 2017Latest edition Springer International Publishing Switzer
描述.This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included.? By transferring these concepts to local space-time symmetries, generalizations of Einstein‘s theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré?gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed...Since the discovery of the Higgs boson, concepts of spontaneous? symmetry breaking in gravity have come again into focus, and, in this revised edition,? these will be exposed in geometric terms.? Quantizing gravity remains an open issue: formulating it as a de Sitter type gauge theory in the spirit of Yang-Mills, some new progress in its topological form is presented. After symmetry breaking, Einstein’s standard general relativity with cosmo
出版日期Book 2017Latest edition
關(guān)鍵詞Foundations of Gauge Theory; Gauge Theories in Particle Physics; Gauge Theories of Gravitation; Geometr
版次2
doihttps://doi.org/10.1007/978-3-319-29734-7
isbn_softcover978-3-319-80638-9
isbn_ebook978-3-319-29734-7Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightSpringer International Publishing Switzerland 2017
The information of publication is updating

書目名稱Geometrodynamics of Gauge Fields影響因子(影響力)




書目名稱Geometrodynamics of Gauge Fields影響因子(影響力)學(xué)科排名




書目名稱Geometrodynamics of Gauge Fields網(wǎng)絡(luò)公開度




書目名稱Geometrodynamics of Gauge Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometrodynamics of Gauge Fields被引頻次




書目名稱Geometrodynamics of Gauge Fields被引頻次學(xué)科排名




書目名稱Geometrodynamics of Gauge Fields年度引用




書目名稱Geometrodynamics of Gauge Fields年度引用學(xué)科排名




書目名稱Geometrodynamics of Gauge Fields讀者反饋




書目名稱Geometrodynamics of Gauge Fields讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:54:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:26:08 | 只看該作者
,Maxwell and Yang–Mills Theory,nical) quantum field theories. Instead of using a local notation, our representation of the formalism will be based upon differential forms which are globally defined on a pseudo-Riemannian manifold of dimension n.
地板
發(fā)表于 2025-3-22 07:27:59 | 只看該作者
Gravitation as a Gauge Theory,rning all the fundamental physical forces. The most promising approach seems to be founded within the geometric framework of gauge field theories. At very high energies, the gravitational interaction is expected to dominate all other interactions and this despite its diminutive coupling constant giv
5#
發(fā)表于 2025-3-22 09:17:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:11 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:36 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:13:31 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟中县| 玉田县| 方山县| 五大连池市| 郴州市| 溧阳市| 西宁市| 古交市| 武定县| 乌鲁木齐市| 石门县| 确山县| 漳浦县| 姜堰市| 安顺市| 乐清市| 县级市| 福海县| 四子王旗| 盐池县| 黄骅市| 奇台县| 株洲县| 石嘴山市| 德昌县| 嘉兴市| 斗六市| 尼木县| 沈丘县| 那坡县| 蒲城县| 青阳县| 石狮市| 体育| 朔州市| 宁德市| 华坪县| 罗江县| 无棣县| 重庆市| 石狮市|