找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrische und algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren; Florin Constantinescu,Hans F. Groote Tex

[復制鏈接]
樓主: 是英寸
21#
發(fā)表于 2025-3-25 03:59:25 | 只看該作者
Zur Krise und Zukunft der Demokratie,Wir beginnen mit den einfachsten algebraischen Strukturen, in denen kommu-tierende und antikommutierende Gr??en vorkommen, n?mlich den ..
22#
發(fā)表于 2025-3-25 11:12:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:59 | 只看該作者
https://doi.org/10.1007/978-3-322-85338-7In diesem Kapitel bringen wir eine Einführung in die lokale Analysis auf Su-permannigfaltigkeiten, d.h. die Analysis auf offenen Untermannigfaltigkeiten, die ein Superkoordinatensystem besitzen.
24#
發(fā)表于 2025-3-25 18:39:38 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:47 | 只看該作者
https://doi.org/10.1007/978-3-662-33053-1Im vorangegangenen Kapitel haben wir für .(β) := 1 - 12β. eine Darstellung der Virasoro-Algebra auf dem Fockraum .(α, β) konstruiert, so daβ die R?ume ..(α, β) der kanonischen Graduierung (8.14) die Eigenr?ume von L. zum Eigenwert .(α,β) + . sind, wobei .(α,β) := ?(α. — β.) ist.
26#
發(fā)表于 2025-3-26 02:09:32 | 只看該作者
https://doi.org/10.1007/978-3-662-42482-7Im elften Kapitel werden wir zeigen, daβ Q(γ .; .).. ein singul?rer Vektor vom Grad . ist, falls γ die Bedingungen (9.65) erfüllt.
27#
發(fā)表于 2025-3-26 08:14:21 | 只看該作者
Josef Fassbender,Werner Hoppe,Walter WeizelWir wollen in diesem Kapitel einige Resultate über die Unitarit?t von H?chstgewichtsdarstellungen der Virasoro-Algebra behandeln, die sich aus der Kac’schen Determinantenformel ergeben.
28#
發(fā)表于 2025-3-26 08:44:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:03:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:56 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 17:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
哈密市| 夏津县| 香格里拉县| 会泽县| 双牌县| 普陀区| 泸定县| 五大连池市| 九寨沟县| 成安县| 普宁市| 云阳县| 宁夏| 珲春市| 蓝山县| 江北区| 广州市| 西贡区| 大化| 五原县| 东乌珠穆沁旗| 苍溪县| 乐安县| 西青区| 高阳县| 灌阳县| 盐池县| 廊坊市| 湖南省| 平舆县| 阜康市| 宜川县| 聂拉木县| 泰宁县| 吉水县| 临漳县| 龙游县| 漳州市| 盱眙县| 兰溪市| 秭归县|