找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrische Ordnungen; Otto Haupt,Hermann Künneth Book 1967 Springer-Verlag, Berlin/Heidelberg 1967 Algebra.Approximation.Beweis.Differen

[復(fù)制鏈接]
樓主: decoction
11#
發(fā)表于 2025-3-23 11:37:03 | 只看該作者
https://doi.org/10.1007/978-3-662-33055-5Die vorliegende Schrift ist Problemen aus dem Gebiet der sog. geometrischen Ordnungen gewidmet. Es handelt sich dabei um Fragen, die durch geometrische, genauer topologische Verallgemeinerung algebraischer und differentialgeometrischer Sachverhalte inauguriert wurden. Dies soll zun?chst an ein paar einfachen Beispielen erl?utert werden.
12#
發(fā)表于 2025-3-23 17:52:55 | 只看該作者
https://doi.org/10.1007/978-3-663-07073-3Der . = ., in welchem sich die Betrachtungen dieses I. Teiles abspielen, ist zumeist eine abgeschlossene Kreisscheibe in der euklidischen Ebene, evtl. ein topologisches Bild von ihr. Der metrische Raum . ist (voll-) kompakt.
13#
發(fā)表于 2025-3-23 18:08:32 | 只看該作者
14#
發(fā)表于 2025-3-24 00:54:40 | 只看該作者
Steffen Goebbels,Jochen RethmannIm folgenden sollen zun?chst Parameterbogen (Durchlaufungsbogen) und ihre .-dimensionalen Schmieg-, insbesondere Tangential- (halb-) Ebenen, im .-dimensionalen projektiven Raum . untersucht werden. Ein wichtiges Hilfsmittel wird dabei die Zentralprojektion der Bogen und ihrer .-dimensionalen Schmieg- sowie Tangentialebenen sein (1 ≤.≤. ? 1).
15#
發(fā)表于 2025-3-24 04:18:04 | 只看該作者
Determiniertheit unendlicher Spiele,Es handelt sich um Bogen . und Kurven . sowie um offene bzw. geschlossene Polygone . bzw. . im reellen projektiven Raum . von .-ter Ordnung bezüglich der (. ? 1)-Ebenen.
16#
發(fā)表于 2025-3-24 06:37:26 | 只看該作者
,Die H-?hnlichkeit der Alkalispektren,Dimensionsformeln im ...Als . (.) von . wird der Durchschnitt aller linearen Unterr?ume . von . mit . ? . bezeichnet oder, damit gleichbedeutend, der kleinste . enthaltende lineare Unterraum von ..
17#
發(fā)表于 2025-3-24 12:15:12 | 只看該作者
EinleitungDie vorliegende Schrift ist Problemen aus dem Gebiet der sog. geometrischen Ordnungen gewidmet. Es handelt sich dabei um Fragen, die durch geometrische, genauer topologische Verallgemeinerung algebraischer und differentialgeometrischer Sachverhalte inauguriert wurden. Dies soll zun?chst an ein paar einfachen Beispielen erl?utert werden.
18#
發(fā)表于 2025-3-24 14:53:22 | 只看該作者
Grundlegende Begriffe und S?tzeDer . = ., in welchem sich die Betrachtungen dieses I. Teiles abspielen, ist zumeist eine abgeschlossene Kreisscheibe in der euklidischen Ebene, evtl. ein topologisches Bild von ihr. Der metrische Raum . ist (voll-) kompakt.
19#
發(fā)表于 2025-3-24 22:27:57 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉荫县| 柳河县| 嘉兴市| 宜宾县| 永州市| 紫阳县| 乐东| 易门县| 金川县| 景宁| 修文县| 思茅市| 益阳市| 若尔盖县| 云浮市| 兴宁市| 中江县| 文成县| 榆中县| 华坪县| 获嘉县| 敦煌市| 黎川县| 军事| 临澧县| 海原县| 琼结县| 宜丰县| 藁城市| 珠海市| 天津市| 漳浦县| 永川市| 泰兴市| 班戈县| 临安市| 周口市| 阳春市| 黎平县| 冀州市| 南康市|