找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrische Ordnungen; Otto Haupt,Hermann Künneth Book 1967 Springer-Verlag, Berlin/Heidelberg 1967 Algebra.Approximation.Beweis.Differen

[復(fù)制鏈接]
樓主: decoction
11#
發(fā)表于 2025-3-23 11:37:03 | 只看該作者
https://doi.org/10.1007/978-3-662-33055-5Die vorliegende Schrift ist Problemen aus dem Gebiet der sog. geometrischen Ordnungen gewidmet. Es handelt sich dabei um Fragen, die durch geometrische, genauer topologische Verallgemeinerung algebraischer und differentialgeometrischer Sachverhalte inauguriert wurden. Dies soll zun?chst an ein paar einfachen Beispielen erl?utert werden.
12#
發(fā)表于 2025-3-23 17:52:55 | 只看該作者
https://doi.org/10.1007/978-3-663-07073-3Der . = ., in welchem sich die Betrachtungen dieses I. Teiles abspielen, ist zumeist eine abgeschlossene Kreisscheibe in der euklidischen Ebene, evtl. ein topologisches Bild von ihr. Der metrische Raum . ist (voll-) kompakt.
13#
發(fā)表于 2025-3-23 18:08:32 | 只看該作者
14#
發(fā)表于 2025-3-24 00:54:40 | 只看該作者
Steffen Goebbels,Jochen RethmannIm folgenden sollen zun?chst Parameterbogen (Durchlaufungsbogen) und ihre .-dimensionalen Schmieg-, insbesondere Tangential- (halb-) Ebenen, im .-dimensionalen projektiven Raum . untersucht werden. Ein wichtiges Hilfsmittel wird dabei die Zentralprojektion der Bogen und ihrer .-dimensionalen Schmieg- sowie Tangentialebenen sein (1 ≤.≤. ? 1).
15#
發(fā)表于 2025-3-24 04:18:04 | 只看該作者
Determiniertheit unendlicher Spiele,Es handelt sich um Bogen . und Kurven . sowie um offene bzw. geschlossene Polygone . bzw. . im reellen projektiven Raum . von .-ter Ordnung bezüglich der (. ? 1)-Ebenen.
16#
發(fā)表于 2025-3-24 06:37:26 | 只看該作者
,Die H-?hnlichkeit der Alkalispektren,Dimensionsformeln im ...Als . (.) von . wird der Durchschnitt aller linearen Unterr?ume . von . mit . ? . bezeichnet oder, damit gleichbedeutend, der kleinste . enthaltende lineare Unterraum von ..
17#
發(fā)表于 2025-3-24 12:15:12 | 只看該作者
EinleitungDie vorliegende Schrift ist Problemen aus dem Gebiet der sog. geometrischen Ordnungen gewidmet. Es handelt sich dabei um Fragen, die durch geometrische, genauer topologische Verallgemeinerung algebraischer und differentialgeometrischer Sachverhalte inauguriert wurden. Dies soll zun?chst an ein paar einfachen Beispielen erl?utert werden.
18#
發(fā)表于 2025-3-24 14:53:22 | 只看該作者
Grundlegende Begriffe und S?tzeDer . = ., in welchem sich die Betrachtungen dieses I. Teiles abspielen, ist zumeist eine abgeschlossene Kreisscheibe in der euklidischen Ebene, evtl. ein topologisches Bild von ihr. Der metrische Raum . ist (voll-) kompakt.
19#
發(fā)表于 2025-3-24 22:27:57 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
法库县| 历史| 金塔县| 肃宁县| 达日县| 三都| 时尚| 深州市| 庆云县| 南溪县| 临沧市| 高密市| 星子县| 图木舒克市| 桑植县| 遵化市| 南丹县| 洪泽县| 酒泉市| 育儿| 汝州市| 安岳县| 新河县| 郁南县| 共和县| 伊吾县| 北宁市| 新昌县| 岳阳市| 镇平县| 恩施市| 白银市| 五莲县| 吉安县| 长乐市| 东港市| 成都市| 舒兰市| 桑日县| 高平市| 迭部县|