找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometries in Interaction; GAFA special issue i Y. Eliashberg,V. Milman,R. Schoen Book 1995 Birkh?user Verlag Basel 1995 Eigenvalue.calculu

[復(fù)制鏈接]
查看: 31300|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:03:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometries in Interaction
副標(biāo)題GAFA special issue i
編輯Y. Eliashberg,V. Milman,R. Schoen
視頻videohttp://file.papertrans.cn/384/383706/383706.mp4
圖書封面Titlebook: Geometries in Interaction; GAFA special issue i Y. Eliashberg,V. Milman,R. Schoen Book 1995 Birkh?user Verlag Basel 1995 Eigenvalue.calculu
出版日期Book 1995
關(guān)鍵詞Eigenvalue; calculus; differential equation; functional analysis; topology
版次1
doihttps://doi.org/10.1007/978-3-0348-9102-8
isbn_softcover978-3-0348-9907-9
isbn_ebook978-3-0348-9102-8
copyrightBirkh?user Verlag Basel 1995
The information of publication is updating

書目名稱Geometries in Interaction影響因子(影響力)




書目名稱Geometries in Interaction影響因子(影響力)學(xué)科排名




書目名稱Geometries in Interaction網(wǎng)絡(luò)公開度




書目名稱Geometries in Interaction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometries in Interaction被引頻次




書目名稱Geometries in Interaction被引頻次學(xué)科排名




書目名稱Geometries in Interaction年度引用




書目名稱Geometries in Interaction年度引用學(xué)科排名




書目名稱Geometries in Interaction讀者反饋




書目名稱Geometries in Interaction讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:49:28 | 只看該作者
Aspects of Long Time Behaviour of Solutions of Nonlinear Hamiltonian Evolution Equations,In this paper we will be mainly concerned with the behaviour of solutions of (space periodic) nonlinear wave equations.and nonlinear Schr?dinger equations. Most of the techniques used have a wider range of applicability however.
地板
發(fā)表于 2025-3-22 05:28:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:57:10 | 只看該作者
https://doi.org/10.1007/978-3-0348-9102-8Eigenvalue; calculus; differential equation; functional analysis; topology
6#
發(fā)表于 2025-3-22 12:56:10 | 只看該作者
https://doi.org/10.1007/978-3-322-91452-1s. Our main result asserts the existence of a kind of generalized Seifert fiber structure on .., for which the fundamental group of fibers injects into that of ... This provides a necessary and sufficient topological condition for a manifold to admit a sufficiently collapsed metric in our class. Amo
7#
發(fā)表于 2025-3-22 17:18:17 | 只看該作者
https://doi.org/10.1007/978-3-663-08445-7the set of all unitary automorphic representations which occur in Langlands’ spectral decomposition of ..(.(.).(.)) and ..(.) those which occur discretely. Throughout this paper, cuspidal automorphic representations will mean unitary cuspidal automorphic representations.
8#
發(fā)表于 2025-3-23 00:12:12 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:27 | 只看該作者
https://doi.org/10.1007/978-3-663-04769-8 In particular, the problem of Lagrangian intersections naturally arises in connection with several contact geometric questions (see 2.5 example, and below). However, there is one major difficulty when one tries to realize this approach: . and, what is even worse, . (see [EGr1]). This leads to the l
10#
發(fā)表于 2025-3-23 06:16:32 | 只看該作者
Wilhelm Patterson,Dietmar Boenischld ., . : ? → ., is an embedding. For this purpose we shall introduce several algebraic invariants. Finite energy planes have been introduced in [H] for the solution of A. Weinstein’s conjecture about closed characteristics on three dimensional contact manifolds. In order to recall the concept, we f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛隆县| 芦溪县| 紫云| 合作市| 恩施市| 满洲里市| 平顶山市| 南阳市| 麟游县| 七台河市| 重庆市| 甘谷县| 龙江县| 青浦区| 准格尔旗| 巴马| 米泉市| 错那县| 兴仁县| 宜昌市| 恩平市| 福鼎市| 图木舒克市| 荆州市| 嵊泗县| 旅游| 堆龙德庆县| 禄丰县| 伊宁县| 巢湖市| 盐津县| 乃东县| 开化县| 西乌珠穆沁旗| 和林格尔县| 理塘县| 景宁| 望都县| 桑植县| 甘泉县| 时尚|