找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrie der Raumzeit; Eine mathematische E Rainer Oloff Textbook 2018Latest edition Springer-Verlag GmbH Deutschland, ein Teil von Spring

[復制鏈接]
樓主: Buren
21#
發(fā)表于 2025-3-25 03:40:57 | 只看該作者
22#
發(fā)表于 2025-3-25 09:41:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:38:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:04:36 | 只看該作者
25#
發(fā)表于 2025-3-25 23:37:00 | 只看該作者
26#
發(fā)表于 2025-3-26 03:29:13 | 只看該作者
Textbook 2018Latest edition Dafür wird zuerst die Differentialgeometrie auf Mannigfaltigkeiten eingeführt, einschlie?lich der Differentiation und Integration, und die Spezielle Relativit?tstheorie wird als Tensorrechnung auf den Tangentialr?umen dargestellt. Mit den Einstein‘schen Feldgleichungen, die die Krümmung zur Materie
27#
發(fā)表于 2025-3-26 04:49:08 | 只看該作者
Ausblick auf die Stringtheorie, die Dimension der Raumzeit deutlich vergr??ert werden. Ein Extremalprinzip, ?hnlich wie in der Relativit?tstheorie, bestimmt die kr?ftefreie Bewegung eines Teilchens. Dieses Extremalproblem wird mit der in der Variationsrechnung üblichen Methode gel?st und liefert eine Gleichung, die die Bewegung des Teilchens beschreibt.
28#
發(fā)表于 2025-3-26 09:22:34 | 只看該作者
29#
發(fā)表于 2025-3-26 16:19:59 | 只看該作者
Educational Innovations Beyond TechnologyBasiswechsel in E erzeugt einen Basiswechsel in Epq und damit eine Umrechnungsvorschrift für die Komponenten der Tensoren. Diese Formeln werden in der Physik h?ufig zur Einführungdes Tensorbegriffs benutzt. Wenn E ein euklidischer Raum ist, gibt es dort das Skalarprodukt g. Das ist ein (0,2)-Tensor, der dann das Indexziehen erm?glicht.
30#
發(fā)表于 2025-3-26 19:32:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
名山县| 荆门市| 靖宇县| 房产| 盐津县| 静海县| 蚌埠市| 湘西| 万载县| 武威市| 青铜峡市| 出国| 江达县| 神农架林区| 潢川县| 黄大仙区| 翁源县| 海城市| 庄浪县| 贵溪市| 西城区| 京山县| 孝义市| 绵竹市| 泰顺县| 景泰县| 宿松县| 鲁甸县| 新巴尔虎左旗| 汕头市| 黔西县| 山阳县| 克山县| 全州县| 乡城县| 工布江达县| 诸暨市| 通化市| 宝应县| 盱眙县| 和平区|