找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrie der Raumzeit; Eine mathematische E Rainer Oloff Textbook 2018Latest edition Springer-Verlag GmbH Deutschland, ein Teil von Spring

[復制鏈接]
樓主: Buren
21#
發(fā)表于 2025-3-25 03:40:57 | 只看該作者
22#
發(fā)表于 2025-3-25 09:41:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:38:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:04:36 | 只看該作者
25#
發(fā)表于 2025-3-25 23:37:00 | 只看該作者
26#
發(fā)表于 2025-3-26 03:29:13 | 只看該作者
Textbook 2018Latest edition Dafür wird zuerst die Differentialgeometrie auf Mannigfaltigkeiten eingeführt, einschlie?lich der Differentiation und Integration, und die Spezielle Relativit?tstheorie wird als Tensorrechnung auf den Tangentialr?umen dargestellt. Mit den Einstein‘schen Feldgleichungen, die die Krümmung zur Materie
27#
發(fā)表于 2025-3-26 04:49:08 | 只看該作者
Ausblick auf die Stringtheorie, die Dimension der Raumzeit deutlich vergr??ert werden. Ein Extremalprinzip, ?hnlich wie in der Relativit?tstheorie, bestimmt die kr?ftefreie Bewegung eines Teilchens. Dieses Extremalproblem wird mit der in der Variationsrechnung üblichen Methode gel?st und liefert eine Gleichung, die die Bewegung des Teilchens beschreibt.
28#
發(fā)表于 2025-3-26 09:22:34 | 只看該作者
29#
發(fā)表于 2025-3-26 16:19:59 | 只看該作者
Educational Innovations Beyond TechnologyBasiswechsel in E erzeugt einen Basiswechsel in Epq und damit eine Umrechnungsvorschrift für die Komponenten der Tensoren. Diese Formeln werden in der Physik h?ufig zur Einführungdes Tensorbegriffs benutzt. Wenn E ein euklidischer Raum ist, gibt es dort das Skalarprodukt g. Das ist ein (0,2)-Tensor, der dann das Indexziehen erm?glicht.
30#
發(fā)表于 2025-3-26 19:32:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
太谷县| 谷城县| 高邮市| 嵊泗县| 海林市| 崇明县| 新竹县| 库车县| 南川市| 十堰市| 大荔县| 松阳县| 德昌县| 松滋市| 太白县| 依兰县| 基隆市| 余江县| 海原县| 陈巴尔虎旗| 台安县| 蒙山县| 昌江| 苏尼特左旗| 葵青区| 南通市| 桂东县| 通江县| 嘉义县| 乌恰县| 望都县| 盘锦市| 阜南县| 临泉县| 南康市| 绩溪县| 龙游县| 泰州市| 镇赉县| 岢岚县| 清徐县|