找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical and Topological Methods in Gauge Theories; Proceedings of the C J. P. Harnad,S. Shnider Conference proceedings 1980 Springer-Ve

[復(fù)制鏈接]
查看: 47431|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:20:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometrical and Topological Methods in Gauge Theories
副標(biāo)題Proceedings of the C
編輯J. P. Harnad,S. Shnider
視頻videohttp://file.papertrans.cn/384/383670/383670.mp4
叢書名稱Lecture Notes in Physics
圖書封面Titlebook: Geometrical and Topological Methods in Gauge Theories; Proceedings of the C J. P. Harnad,S. Shnider Conference proceedings 1980 Springer-Ve
出版日期Conference proceedings 1980
關(guān)鍵詞Eichung; Minkowski space; bifurcation; fibre bundles; gauge transformation; geometry; invariant; solution; s
版次1
doihttps://doi.org/10.1007/BFb0024132
isbn_softcover978-3-540-10010-2
isbn_ebook978-3-540-38142-6Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer-Verlag Berlin Heidelberg 1980
The information of publication is updating

書目名稱Geometrical and Topological Methods in Gauge Theories影響因子(影響力)




書目名稱Geometrical and Topological Methods in Gauge Theories影響因子(影響力)學(xué)科排名




書目名稱Geometrical and Topological Methods in Gauge Theories網(wǎng)絡(luò)公開度




書目名稱Geometrical and Topological Methods in Gauge Theories網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometrical and Topological Methods in Gauge Theories被引頻次




書目名稱Geometrical and Topological Methods in Gauge Theories被引頻次學(xué)科排名




書目名稱Geometrical and Topological Methods in Gauge Theories年度引用




書目名稱Geometrical and Topological Methods in Gauge Theories年度引用學(xué)科排名




書目名稱Geometrical and Topological Methods in Gauge Theories讀者反饋




書目名稱Geometrical and Topological Methods in Gauge Theories讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:23 | 只看該作者
Metric and connection theories of gravity: The gauge theories of spacetime symmetry,corresponding principal bundles. The most familiar are: the Lorentz group = 0(3,1,8) which uses the bundle of orthonormal frames, GL(4,R) with the general linear frame bundle, the Poincare group = IO(3,1,R) with the affine orthonormal frame bundle, and the spinor group, SL(2,C), with the orthonormal
板凳
發(fā)表于 2025-3-22 04:21:24 | 只看該作者
https://doi.org/10.1007/978-3-642-38931-3(these are also defined by Kostant but we present a directly geometrical definition which is more convenient for our purposes), vector bundles, and principal bundles..With these notions in place, we can define a graded G-structure on a graded manifold In the simplest non-trivial case, this leads imm
地板
發(fā)表于 2025-3-22 08:28:54 | 只看該作者
Education and IT Policy: Virtual Reality?,corresponding principal bundles. The most familiar are: the Lorentz group = 0(3,1,8) which uses the bundle of orthonormal frames, GL(4,R) with the general linear frame bundle, the Poincare group = IO(3,1,R) with the affine orthonormal frame bundle, and the spinor group, SL(2,C), with the orthonormal
5#
發(fā)表于 2025-3-22 12:40:37 | 只看該作者
978-3-540-10010-2Springer-Verlag Berlin Heidelberg 1980
6#
發(fā)表于 2025-3-22 14:23:17 | 只看該作者
Geometrical and Topological Methods in Gauge Theories978-3-540-38142-6Series ISSN 0075-8450 Series E-ISSN 1616-6361
7#
發(fā)表于 2025-3-22 19:55:38 | 只看該作者
0075-8450 Overview: 978-3-540-10010-2978-3-540-38142-6Series ISSN 0075-8450 Series E-ISSN 1616-6361
8#
發(fā)表于 2025-3-23 00:43:04 | 只看該作者
9#
發(fā)表于 2025-3-23 04:14:35 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:08 | 只看該作者
On groups of gauge transformations,Groups of gauge transformations (gauge groups) are defined in the framework of principal bundles. The gauge group of a trivial bundle is exhibited and the gauge aspect of gravitation is compared to that of Yang-Mills theories.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌图县| 嵩明县| 永康市| 东丰县| 凌源市| 丰县| 噶尔县| 海丰县| 双城市| 鹰潭市| 平远县| 芜湖市| 定南县| 满洲里市| 库尔勒市| 班戈县| 尼木县| 湄潭县| 平乐县| 集安市| 桃源县| 榆树市| 和静县| 南丹县| 成安县| 海口市| 加查县| 远安县| 木里| 蓬莱市| 余庆县| 台中县| 盖州市| 陆川县| 射洪县| 佛教| 庆安县| 昆山市| 桦川县| 洞头县| 建昌县|