找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Multiresolution Adaptive Transforms; Theory and Applicati Agnieszka Lisowska Book 2014 Springer International Publishing Switze

[復(fù)制鏈接]
樓主: 自由
11#
發(fā)表于 2025-3-23 12:08:38 | 只看該作者
https://doi.org/10.1007/978-94-007-6455-2 one is based on sliding multismoothlets. Both methods were compared to the state-of-the-art methods. As follows from the performed experiments, the method based on sliding multismoothlets leads to the best results of edge detection.
12#
發(fā)表于 2025-3-23 17:33:34 | 只看該作者
Moments-Based Multismoothlet Transforme transform was presented in the consecutive steps, starting from a linear beamlet computation. Further, smoothlet parameters are computed. And finally, multismoothlet parameters are determined. At the end of this chapter, the computational complexity of the presented transform was discussed followed by some numerical results.
13#
發(fā)表于 2025-3-23 20:30:42 | 只看該作者
14#
發(fā)表于 2025-3-23 22:59:07 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:45 | 只看該作者
16#
發(fā)表于 2025-3-24 10:21:28 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:29 | 只看該作者
Marcel Meinders,Nico Van Breemently to multiple edges. So, the multismoothlet can adapt to edges of different multiplicity, location, scale, orientation, curvature and blur. Additionally, a notion of sliding multismoothlet was introduced. It is the multismoothlet with location and size defined freely within an image. Based on that
18#
發(fā)表于 2025-3-24 17:03:00 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:20 | 只看該作者
20#
發(fā)表于 2025-3-25 00:00:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁寿县| 镇康县| 宁晋县| 莱西市| 西和县| 塔城市| 榆林市| 岑溪市| 图木舒克市| 新乡市| 德庆县| 万年县| 运城市| 同德县| 新乡县| 石狮市| 体育| 中山市| 富阳市| 军事| 巴彦县| 息烽县| 咸宁市| 永宁县| 武宁县| 镇康县| 张北县| 泰宁县| 醴陵市| 青海省| 奈曼旗| 浙江省| 庄河市| 福州市| 天全县| 桐梓县| 武隆县| 会东县| 凤山市| 石河子市| 桦川县|