找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Methods in Variational Problems; N. A. Bobylev,S. V. Emel’yanov,S. K. Korovin Book 1999 Springer Science+Business Media Dordre

[復(fù)制鏈接]
樓主: malignant
11#
發(fā)表于 2025-3-23 12:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:38 | 只看該作者
13#
發(fā)表于 2025-3-23 19:55:01 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8oblems, problems of the classical calculus of variations, higher-dimensional variational problems, and mathematical programming problems. Conceptually, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isol
14#
發(fā)表于 2025-3-24 02:16:07 | 只看該作者
Introduction to the E3-India Model,valent to it; these theories originate in the classical studies of Poincaré, Brouwer, Kronecker, Hopf, Leray, and Schauder. The apparatus of the degree theory of mapping is one of the basic tools of nonlinear analysis and its applications. Therefore, we present the auxiliary material of this chapter
15#
發(fā)表于 2025-3-24 05:24:34 | 只看該作者
Minimization of Nonlinear Functionals,lculus of variations, optimal control theory, mathematical physics, mechanics, .. In this chapter, we present general theorems of the minimum of nonlinear functionals, which form a basis of variational methods.
16#
發(fā)表于 2025-3-24 09:23:30 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:55 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isolated with respect to a parameter, then its property to be a point of minimum is a homotopy invariant. This chapter is devoted to the verification of this principle, which has many applications.
19#
發(fā)表于 2025-3-24 20:31:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:28:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旅游| 喀什市| 平利县| 新安县| 东丽区| 大邑县| 阿鲁科尔沁旗| 柘荣县| 光山县| 祁东县| 鹤庆县| 新乐市| 临安市| 花莲市| 察哈| 长武县| 陆河县| 涪陵区| 五莲县| 虎林市| 太仆寺旗| 井冈山市| 寿阳县| 贵南县| 仁寿县| 响水县| 孙吴县| 铁岭市| 南平市| 故城县| 会宁县| 洞口县| 临西县| 亳州市| 东莞市| 陇南市| 兴和县| 大田县| 南开区| 抚顺市| 河源市|