找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis; With Applications to Teiji Kunihiro,Yuta Kikuchi,Kyosuke

[復(fù)制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 21:19:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:37:38 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:27 | 只看該作者
https://doi.org/10.1007/978-4-431-53957-5e RG method. Second-order fluid dynamic equations are of great importance in some systems, such as cold atomic gases, in which their diluteness or inhomogeneity is so large that a novel theoretical scheme is necessary to facilitate the understanding of mesoscopic dynamics. Nevertheless deriving the
34#
發(fā)表于 2025-3-27 12:55:26 | 只看該作者
Geometrical Formulation of Renormalization-Group Method as an Asymptotic AnalysisWith Applications to
35#
發(fā)表于 2025-3-27 17:05:47 | 只看該作者
36#
發(fā)表于 2025-3-27 20:17:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:00:02 | 只看該作者
Na?ve Perturbation Method for Solving Ordinary Differential Equations and Notion of Secular Terms na?ve perturbation series of solutions of ordinary differential equations. This chapter also constitutes an elementary introduction to some standard methods for solving linear inhomogeneous ordinary differential equations in the undergraduate level, and a detailed account is given of the method of
38#
發(fā)表于 2025-3-28 02:42:19 | 只看該作者
Conventional Resummation Methods for Differential Equationsmain by circumventing the appearance of secular terms. It will be found that all the methods consist of rearranging the equation by introducing some unknown quantities, which are to be determined by the solvability condition with which the appearance of secular terms are avoided.
39#
發(fā)表于 2025-3-28 08:49:08 | 只看該作者
40#
發(fā)表于 2025-3-28 13:42:31 | 只看該作者
Miscellaneous Examples of Reduction of Dynamicse Hopf-bifurcation point in Brusselator with and without a diffusion term. Then a couple of examples are analyzed in the RG method, the unperturbed operators of both of which are not semi-simple and have a Jordan cell structure; one is an extended Takens model and the other is the Benney equation, f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙海市| 安图县| 盐亭县| 沽源县| 石狮市| 观塘区| 南投县| 临高县| 册亨县| 石嘴山市| 调兵山市| 安西县| 大同县| 横峰县| 吉林市| 射阳县| 南投市| 西林县| 陇南市| 屏山县| 福建省| 教育| 无锡市| 美姑县| 陕西省| 大宁县| 枝江市| 蒙自县| 安岳县| 汶川县| 开封县| 芦山县| 武城县| 桓仁| 科技| 维西| 静海县| 庐江县| 太保市| 潞西市| 宁德市|