找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis; With Applications to Teiji Kunihiro,Yuta Kikuchi,Kyosuke

[復(fù)制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 21:19:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:37:38 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:27 | 只看該作者
https://doi.org/10.1007/978-4-431-53957-5e RG method. Second-order fluid dynamic equations are of great importance in some systems, such as cold atomic gases, in which their diluteness or inhomogeneity is so large that a novel theoretical scheme is necessary to facilitate the understanding of mesoscopic dynamics. Nevertheless deriving the
34#
發(fā)表于 2025-3-27 12:55:26 | 只看該作者
Geometrical Formulation of Renormalization-Group Method as an Asymptotic AnalysisWith Applications to
35#
發(fā)表于 2025-3-27 17:05:47 | 只看該作者
36#
發(fā)表于 2025-3-27 20:17:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:00:02 | 只看該作者
Na?ve Perturbation Method for Solving Ordinary Differential Equations and Notion of Secular Terms na?ve perturbation series of solutions of ordinary differential equations. This chapter also constitutes an elementary introduction to some standard methods for solving linear inhomogeneous ordinary differential equations in the undergraduate level, and a detailed account is given of the method of
38#
發(fā)表于 2025-3-28 02:42:19 | 只看該作者
Conventional Resummation Methods for Differential Equationsmain by circumventing the appearance of secular terms. It will be found that all the methods consist of rearranging the equation by introducing some unknown quantities, which are to be determined by the solvability condition with which the appearance of secular terms are avoided.
39#
發(fā)表于 2025-3-28 08:49:08 | 只看該作者
40#
發(fā)表于 2025-3-28 13:42:31 | 只看該作者
Miscellaneous Examples of Reduction of Dynamicse Hopf-bifurcation point in Brusselator with and without a diffusion term. Then a couple of examples are analyzed in the RG method, the unperturbed operators of both of which are not semi-simple and have a Jordan cell structure; one is an extended Takens model and the other is the Benney equation, f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林市| 台北县| 潼关县| 兴国县| 玛多县| 连平县| 山东| 揭阳市| 积石山| 来宾市| 汶川县| 和顺县| 永安市| 五常市| 罗山县| 灵宝市| 余姚市| 平谷区| 杂多县| 商河县| 东丽区| 开阳县| 东阿县| 昔阳县| 上蔡县| 博乐市| 大悟县| 绥化市| 玛沁县| 穆棱市| 射洪县| 民和| 桂东县| 治多县| 饶河县| 防城港市| 唐海县| 德安县| 乐业县| 习水县| 石首市|