找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Quantum Aspects of Integrable Systems; Proceedings of the E G. F. Helminck Conference proceedings 1993 Springer-Verlag Berlin

[復制鏈接]
樓主: implicate
11#
發(fā)表于 2025-3-23 11:04:22 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:45 | 只看該作者
13#
發(fā)表于 2025-3-23 21:15:25 | 只看該作者
Re-Employment and Job Search Activities,udying the homology of the so-called slowness hypersurface defined by the characteristic equation. Our starting point is the Herglotz-Petrovsky-Leray integral representation of the fundamental solution. We find an explicit decomposition of the latter solution into integrals over vanishing cycles ass
14#
發(fā)表于 2025-3-24 02:08:51 | 只看該作者
,The ‘Golden Age’ of the Gaullist Era,ntum mappings, i.e. iterative canonical transformations that can be interpreted as the time-one step of a discrete-time evolution. As particular examples we consider quantum mappings associated with the lattice analogues of the KdV and MKdV equations, together with their exact quantum invariants.
15#
發(fā)表于 2025-3-24 03:29:33 | 只看該作者
16#
發(fā)表于 2025-3-24 10:36:01 | 只看該作者
Geometric and Quantum Aspects of Integrable Systems978-3-540-48090-7Series ISSN 0075-8450 Series E-ISSN 1616-6361
17#
發(fā)表于 2025-3-24 12:50:33 | 只看該作者
,The ‘Golden Age’ of the Gaullist Era,ntum mappings, i.e. iterative canonical transformations that can be interpreted as the time-one step of a discrete-time evolution. As particular examples we consider quantum mappings associated with the lattice analogues of the KdV and MKdV equations, together with their exact quantum invariants.
18#
發(fā)表于 2025-3-24 15:55:47 | 只看該作者
19#
發(fā)表于 2025-3-24 21:22:14 | 只看該作者
20#
發(fā)表于 2025-3-24 23:18:11 | 只看該作者
0075-8450 tegrability techniques e.g. forthe modified KdV equation, integrabilityof Hamiltoniansystems, hierarchies of equations, probability distributionof eigenvalues, and modern aspects of quantum groups.Itaddresses researchers in mathematics and mathematicalphysics.978-3-662-13930-1978-3-540-48090-7Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
克拉玛依市| 金昌市| 腾冲县| 甘泉县| 大冶市| 大宁县| 朝阳县| 黔西| 翁牛特旗| 沽源县| 色达县| 老河口市| 齐齐哈尔市| 巨野县| 原平市| 万宁市| 泰来县| 巧家县| 宝坻区| 洛宁县| 青海省| 常山县| 城步| 浙江省| 都江堰市| 新绛县| 瑞安市| 浦城县| 临桂县| 延川县| 富裕县| 天镇县| 临江市| 香河县| 房山区| 贺兰县| 宁津县| 枞阳县| 丹凤县| 乡城县| 缙云县|