找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Numerical Optimal Control; Application to Swimm Bernard Bonnard,Monique Chyba,Jérémy Rouot Book 2018 The Author(s), under exc

[復(fù)制鏈接]
查看: 35402|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:38:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric and Numerical Optimal Control
副標(biāo)題Application to Swimm
編輯Bernard Bonnard,Monique Chyba,Jérémy Rouot
視頻videohttp://file.papertrans.cn/384/383641/383641.mp4
概述Provides recent findings and state-of-art computational techniques in geometric control.Analyzes the problem of micro-swimming in relation with sub-Riemannian geometry.Presents the application of opti
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Geometric and Numerical Optimal Control; Application to Swimm Bernard Bonnard,Monique Chyba,Jérémy Rouot Book 2018 The Author(s), under exc
描述This book introduces readers to techniques of geometric optimal control as well as the exposure and applicability of adapted numerical schemes. It is based on two real-world applications, which have been the subject of two current academic research programs and motivated by industrial use – ?the design of micro-swimmers and the contrast problem in medical resonance imaging. The recently developed numerical software has been applied to the cases studies presented here. The book is intended for use at the graduate and Ph.D. level to introduce students from applied mathematics and control engineering to geometric and computational techniques in optimal control..
出版日期Book 2018
關(guān)鍵詞Optimal Control; Calculus of Variations; Swimming at Low Reynolds Number; Magnetic Resonance Imaging; Nu
版次1
doihttps://doi.org/10.1007/978-3-319-94791-4
isbn_softcover978-3-319-94790-7
isbn_ebook978-3-319-94791-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Geometric and Numerical Optimal Control影響因子(影響力)




書目名稱Geometric and Numerical Optimal Control影響因子(影響力)學(xué)科排名




書目名稱Geometric and Numerical Optimal Control網(wǎng)絡(luò)公開度




書目名稱Geometric and Numerical Optimal Control網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric and Numerical Optimal Control被引頻次




書目名稱Geometric and Numerical Optimal Control被引頻次學(xué)科排名




書目名稱Geometric and Numerical Optimal Control年度引用




書目名稱Geometric and Numerical Optimal Control年度引用學(xué)科排名




書目名稱Geometric and Numerical Optimal Control讀者反饋




書目名稱Geometric and Numerical Optimal Control讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:36 | 只看該作者
Geometric and Numerical Optimal Control978-3-319-94791-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
板凳
發(fā)表于 2025-3-22 03:44:11 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:38 | 只看該作者
Bernadette Andreosso-O’Callaghan,Qin TangIn this section we state the Pontryagin maximum principle and we outline the proof. We adopt the presentation from Lee and Markus [64] where the result is presented into two theorems.
6#
發(fā)表于 2025-3-22 16:11:57 | 只看該作者
Sven Bislev,Dorte Salskov-IversenThe two cases studied in this book show the practical interest of combining geometric optimal control with numeric computations using the developed software to solve industrial type problems.
7#
發(fā)表于 2025-3-22 17:34:17 | 只看該作者
,Historical Part—Calculus of Variations,The calculus of variations is an old mathematical discipline and historically finds its origins in the introduction of the brachistochrone problem at the end of the 17th century by Johann Bernoulli to challenge his contemporaries to solve it. Here, we briefly introduce the reader to the main results.
8#
發(fā)表于 2025-3-22 22:37:13 | 只看該作者
Weak Maximum Principle and Application to Swimming at Low Reynolds Number,We refer to [9, 42, 46] for more details about the general concepts and notations introduced in this section.
9#
發(fā)表于 2025-3-23 02:07:38 | 只看該作者
Maximum Principle and Application to Nuclear Magnetic Resonance and Magnetic Resonance Imaging,In this section we state the Pontryagin maximum principle and we outline the proof. We adopt the presentation from Lee and Markus [64] where the result is presented into two theorems.
10#
發(fā)表于 2025-3-23 06:01:54 | 只看該作者
Conclusion,The two cases studied in this book show the practical interest of combining geometric optimal control with numeric computations using the developed software to solve industrial type problems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
恭城| 昌乐县| 池州市| 霍林郭勒市| 沅江市| 临泽县| 麻城市| 皋兰县| 竹北市| 永昌县| 万盛区| 岑巩县| 安陆市| 舞阳县| 固安县| 东乡| 牟定县| 华容县| 彩票| 肥城市| 巍山| 沁阳市| 定远县| 普安县| 连江县| 宜川县| 卓资县| 登封市| 衡阳市| 阿勒泰市| 宿松县| 资中县| 文化| 七台河市| 尉氏县| 新宁县| 双城市| 政和县| 涟源市| 韶关市| 梅河口市|