找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2019, Djerba, Tu Ali Baklouti,Hideyuki Ishi Conference proceedi

[復(fù)制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 03:47:25 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:37 | 只看該作者
Protectionism and Empire Unity after 1875of the group .. The purpose of this paper is to show that if . is isomorphic to a closed subgroup lattice of a Lie group with finitely many connected components, then . itself is a Lie group with finitely many connected components. Moreover, we establish that . is finite if and only if . is finite.
23#
發(fā)表于 2025-3-25 11:59:00 | 只看該作者
24#
發(fā)表于 2025-3-25 17:24:42 | 只看該作者
Tai-Yoo Kim,Almas Heshmati,Jihyoun Park terms of its .-norm and the diameter of its support. We investigate in this paper the algebraic structure of compactly generated .-adic groups that have property (RD). We prove in particular that an algebraic group over . which is compactly generated as well as its radical has property (RD) if and only if it is reductive.
25#
發(fā)表于 2025-3-25 20:11:15 | 只看該作者
26#
發(fā)表于 2025-3-26 04:07:34 | 只看該作者
Muhammad Shahbaz,Alaa Soliman,Subhan Ullahductive absolutely spherical subgroups . and .. As an application, we describe generic double cosets with some exceptions. The exceptions for our approach come from some factorizations of type .-groups.
27#
發(fā)表于 2025-3-26 07:57:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:17 | 只看該作者
29#
發(fā)表于 2025-3-26 13:22:14 | 只看該作者
On the Subgroup Lattices of Lie Groups with Finitely Many Connected Components,of the group .. The purpose of this paper is to show that if . is isomorphic to a closed subgroup lattice of a Lie group with finitely many connected components, then . itself is a Lie group with finitely many connected components. Moreover, we establish that . is finite if and only if . is finite.
30#
發(fā)表于 2025-3-26 18:45:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡嘎县| 宣武区| 广丰县| 蛟河市| 中方县| 梓潼县| 靖西县| 正定县| 平和县| 利津县| 博爱县| 瓦房店市| 肃南| 涞源县| 南靖县| 平塘县| 南华县| 驻马店市| 北海市| 鹤山市| 中山市| 独山县| 深水埗区| 岳阳县| 平原县| 芷江| 信阳市| 武威市| 巨野县| 那坡县| 四平市| 南投县| 襄樊市| 博爱县| 徐闻县| 昌乐县| 吴堡县| 拉孜县| 赣州市| 饶阳县| 大埔县|