找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Ergodic Aspects of Group Actions; S. G. Dani,Anish Ghosh Book 2019 Springer Nature Singapore Pte Ltd. 2019 Ergodic Theory.Ho

[復(fù)制鏈接]
查看: 9864|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:58:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric and Ergodic Aspects of Group Actions
編輯S. G. Dani,Anish Ghosh
視頻videohttp://file.papertrans.cn/384/383636/383636.mp4
概述Provides discussions on geometrically finite and infinite surfaces.Offers a broad overview of geometric and ergodic aspects of group actions.Facilitates the learning of topics through adequate clarifi
叢書名稱Infosys Science Foundation Series
圖書封面Titlebook: Geometric and Ergodic Aspects of Group Actions;  S. G. Dani,Anish Ghosh Book 2019 Springer Nature Singapore Pte Ltd. 2019 Ergodic Theory.Ho
描述.This book gathers papers on recent advances in the ergodic theory of group actions on homogeneous spaces and on geometrically finite hyperbolic manifolds presented at the workshop “Geometric and Ergodic Aspects of Group Actions,” organized by the Tata Institute of Fundamental Research, Mumbai, India, in 2018. Written by eminent scientists, and providing clear, detailed accounts of various topics at the interface of ergodic theory, the theory of homogeneous dynamics, and the geometry of hyperbolic surfaces, the book is a valuable resource for researchers and advanced graduate students in mathematics..
出版日期Book 2019
關(guān)鍵詞Ergodic Theory; Homogeneous Flows; Exponential Mixing; Central Limit Theorem; Horocycle Flows; Hyperbolic
版次1
doihttps://doi.org/10.1007/978-981-15-0683-3
isbn_softcover978-981-15-0685-7
isbn_ebook978-981-15-0683-3Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Geometric and Ergodic Aspects of Group Actions影響因子(影響力)




書目名稱Geometric and Ergodic Aspects of Group Actions影響因子(影響力)學(xué)科排名




書目名稱Geometric and Ergodic Aspects of Group Actions網(wǎng)絡(luò)公開(kāi)度




書目名稱Geometric and Ergodic Aspects of Group Actions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Geometric and Ergodic Aspects of Group Actions被引頻次




書目名稱Geometric and Ergodic Aspects of Group Actions被引頻次學(xué)科排名




書目名稱Geometric and Ergodic Aspects of Group Actions年度引用




書目名稱Geometric and Ergodic Aspects of Group Actions年度引用學(xué)科排名




書目名稱Geometric and Ergodic Aspects of Group Actions讀者反饋




書目名稱Geometric and Ergodic Aspects of Group Actions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:37:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:01:09 | 只看該作者
978-981-15-0685-7Springer Nature Singapore Pte Ltd. 2019
地板
發(fā)表于 2025-3-22 08:19:15 | 只看該作者
Geometric and Ergodic Aspects of Group Actions978-981-15-0683-3Series ISSN 2363-6149 Series E-ISSN 2363-6157
5#
發(fā)表于 2025-3-22 09:30:30 | 只看該作者
S. G. Dani,Anish GhoshProvides discussions on geometrically finite and infinite surfaces.Offers a broad overview of geometric and ergodic aspects of group actions.Facilitates the learning of topics through adequate clarifi
6#
發(fā)表于 2025-3-22 13:12:36 | 只看該作者
The Export Challenges for African Countries,This is an introduction to the theory of Kleinian groups, with a focus on Kleinian surface groups: both geometrically finite and infinite.
7#
發(fā)表于 2025-3-22 18:48:01 | 只看該作者
8#
發(fā)表于 2025-3-23 00:53:39 | 只看該作者
Lectures on Kleinian Groups,This is an introduction to the theory of Kleinian groups, with a focus on Kleinian surface groups: both geometrically finite and infinite.
9#
發(fā)表于 2025-3-23 02:38:52 | 只看該作者
Exponential Mixing: Lectures from Mumbai,We discuss a number of results related to mixing and, in particular, to the rate of mixing. This is sometimes alternatively known as the rate of decay of correlations.
10#
發(fā)表于 2025-3-23 06:21:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广水市| 屏南县| 长治市| 灵山县| 福安市| 杂多县| 修水县| 兴宁市| 岫岩| 绥芬河市| 资中县| 客服| 汉寿县| 南投市| 瓦房店市| 兴和县| 开封市| 横山县| 特克斯县| 宁津县| 当阳市| 莒南县| 五大连池市| 清苑县| 通江县| 远安县| 静乐县| 神池县| 渝北区| 鲁山县| 乡宁县| 苍梧县| 石城县| 永清县| 同德县| 灵川县| 定结县| 东乌珠穆沁旗| 九台市| 临邑县| 新邵县|