找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Topology and Shape Theory; Proceedings of a Con Sibe Marde?i?,Jack Segal Conference proceedings 1987 Springer-Verlag Berlin Heide

[復制鏈接]
樓主: 海市蜃樓
11#
發(fā)表于 2025-3-23 10:13:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:37:56 | 只看該作者
John M. Edington,M. Ann Edingtonoduce the class of nearly extendable multi-valued maps and prove that every acyclic upper semi-continuous nearly extendable multi-valued map of arbitrary compactum having ?ech homology of finite type into itself with non-trivial Lefschetz numer has a fixed point.
13#
發(fā)表于 2025-3-23 19:05:53 | 只看該作者
14#
發(fā)表于 2025-3-24 00:17:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:21 | 只看該作者
Sheaves that are locally constant with applications to homology manifolds, the orientation sheaf is locally constant. Additional applications appearing elsewhere include determining the homological local connectivity of decomposition spaces and providing dimension estimates of the images of closed mappings.
16#
發(fā)表于 2025-3-24 09:03:31 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:15 | 只看該作者
0075-8434 versus cohomological dimension, ANR‘s and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.978-3-540-18443-0978-3-540-47975-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:05:36 | 只看該作者
19#
發(fā)表于 2025-3-24 20:44:42 | 只看該作者
Sheaves that are locally constant with applications to homology manifolds,lyses applies regardiess of the source of the presheaves, the applications involve either the homology presheaf and sheaf of a space or the cohomology presheaf and sheaf of a continuous function. Amongst the applications is an elementary proof that homology manifolds are locally orientable; that is,
20#
發(fā)表于 2025-3-24 23:22:14 | 只看該作者
The intimate connections among decomposition theory, embedding theory, and manifold structure theor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
葫芦岛市| 昌吉市| 涪陵区| 怀宁县| 吐鲁番市| 故城县| 伊通| 高阳县| 长丰县| 弥勒县| 阳谷县| 千阳县| 临颍县| 洛南县| 普兰店市| 宣武区| 建水县| 宜昌市| 攀枝花市| 海丰县| 遂昌县| 香河县| 三都| 黄石市| 巢湖市| 罗定市| 江都市| 湖南省| 科技| 上杭县| 哈巴河县| 兴义市| 信宜市| 腾冲县| 钟祥市| 井研县| 台东市| 古田县| 商城县| 定南县| 凤翔县|