找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Topology and Shape Theory; Proceedings of a Con Sibe Marde?i?,Jack Segal Conference proceedings 1987 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: 海市蜃樓
11#
發(fā)表于 2025-3-23 10:13:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:37:56 | 只看該作者
John M. Edington,M. Ann Edingtonoduce the class of nearly extendable multi-valued maps and prove that every acyclic upper semi-continuous nearly extendable multi-valued map of arbitrary compactum having ?ech homology of finite type into itself with non-trivial Lefschetz numer has a fixed point.
13#
發(fā)表于 2025-3-23 19:05:53 | 只看該作者
14#
發(fā)表于 2025-3-24 00:17:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:21 | 只看該作者
Sheaves that are locally constant with applications to homology manifolds, the orientation sheaf is locally constant. Additional applications appearing elsewhere include determining the homological local connectivity of decomposition spaces and providing dimension estimates of the images of closed mappings.
16#
發(fā)表于 2025-3-24 09:03:31 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:15 | 只看該作者
0075-8434 versus cohomological dimension, ANR‘s and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.978-3-540-18443-0978-3-540-47975-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:05:36 | 只看該作者
19#
發(fā)表于 2025-3-24 20:44:42 | 只看該作者
Sheaves that are locally constant with applications to homology manifolds,lyses applies regardiess of the source of the presheaves, the applications involve either the homology presheaf and sheaf of a space or the cohomology presheaf and sheaf of a continuous function. Amongst the applications is an elementary proof that homology manifolds are locally orientable; that is,
20#
發(fā)表于 2025-3-24 23:22:14 | 只看該作者
The intimate connections among decomposition theory, embedding theory, and manifold structure theor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中阳县| 浪卡子县| 石门县| 呼伦贝尔市| 兴安县| 额济纳旗| 黑龙江省| 资溪县| 临沂市| 潮州市| 陆川县| 海伦市| 酒泉市| 洪湖市| 包头市| 青川县| 河津市| 阿勒泰市| 金堂县| 章丘市| 左云县| 平武县| 吉安市| 申扎县| 北票市| 安阳县| 北辰区| 宁陵县| 灵寿县| 无极县| 涞源县| 林口县| 徐水县| 龙南县| 浦江县| 昌邑市| 启东市| 东明县| 宣城市| 右玉县| 黔南|