找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Theory of Generalized Functions with Applications to General Relativity; Michael Grosser,Michael Kunzinger,Roland Steinbaue Book

[復(fù)制鏈接]
查看: 31456|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:50:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity
編輯Michael Grosser,Michael Kunzinger,Roland Steinbaue
視頻videohttp://file.papertrans.cn/384/383622/383622.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Geometric Theory of Generalized Functions with Applications to General Relativity;  Michael Grosser,Michael Kunzinger,Roland Steinbaue Book
描述Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in- ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop- ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub- ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono- graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subje
出版日期Book 2001
關(guān)鍵詞Lie group; Symmetry group; diffeomorphism; differential geometry; distribution; functional analysis; manif
版次1
doihttps://doi.org/10.1007/978-94-015-9845-3
isbn_softcover978-90-481-5880-5
isbn_ebook978-94-015-9845-3
copyrightSpringer Science+Business Media Dordrecht 2001
The information of publication is updating

書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity影響因子(影響力)




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity影響因子(影響力)學(xué)科排名




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity網(wǎng)絡(luò)公開度




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity被引頻次




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity被引頻次學(xué)科排名




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity年度引用




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity年度引用學(xué)科排名




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity讀者反饋




書目名稱Geometric Theory of Generalized Functions with Applications to General Relativity讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:20:06 | 只看該作者
Generalized Functions on Manifolds,In this chapter we present a theory of generalized functions on manifolds as well as of generalized sections of vector bundles providing a framework for linear and nonlinear distributional geometry.
地板
發(fā)表于 2025-3-22 06:37:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:51:58 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:18 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:56 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:16 | 只看該作者
9#
發(fā)表于 2025-3-23 02:38:21 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:05 | 只看該作者
,Geschichte ?kologischen Denkens,ticipate at this point that G.(Ω)—which can be considered as the “l(fā)ocal” case—will be the basis for the construction of the intrinsically defined full Colombeau algebras on a general smooth manifold in Section 3.3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳江县| 岑巩县| 班玛县| 高邑县| 大冶市| 平武县| 兰坪| 安顺市| 酒泉市| 云浮市| 平舆县| 凉城县| 泾川县| 神农架林区| 屯昌县| 汝阳县| 邢台市| 崇左市| 萝北县| 东莞市| 响水县| 永福县| 内江市| 连城县| 台中县| 赤壁市| 北川| 上蔡县| 青铜峡市| 永清县| 莱阳市| 边坝县| 古交市| 扎兰屯市| 凤凰县| 封开县| 星子县| 滨海县| 社会| 囊谦县| 丰宁|