找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Theory of Foliations; César Camacho,Alcides Lins Neto Book 1985 Springer Science+Business Media New York 1985 Lie.Manifold.Topol

[復(fù)制鏈接]
查看: 24912|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:08:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Theory of Foliations
編輯César Camacho,Alcides Lins Neto
視頻videohttp://file.papertrans.cn/384/383621/383621.mp4
圖書封面Titlebook: Geometric Theory of Foliations;  César Camacho,Alcides Lins Neto Book 1985 Springer Science+Business Media New York 1985 Lie.Manifold.Topol
描述Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940‘s; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930‘s: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X· curl X ? 0?" By Frobenius‘ theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to t
出版日期Book 1985
關(guān)鍵詞Lie; Manifold; Topology; equation; foliation; geometry; theorem
版次1
doihttps://doi.org/10.1007/978-1-4612-5292-4
isbn_softcover978-1-4684-7149-6
isbn_ebook978-1-4612-5292-4
copyrightSpringer Science+Business Media New York 1985
The information of publication is updating

書目名稱Geometric Theory of Foliations影響因子(影響力)




書目名稱Geometric Theory of Foliations影響因子(影響力)學(xué)科排名




書目名稱Geometric Theory of Foliations網(wǎng)絡(luò)公開度




書目名稱Geometric Theory of Foliations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Theory of Foliations被引頻次




書目名稱Geometric Theory of Foliations被引頻次學(xué)科排名




書目名稱Geometric Theory of Foliations年度引用




書目名稱Geometric Theory of Foliations年度引用學(xué)科排名




書目名稱Geometric Theory of Foliations讀者反饋




書目名稱Geometric Theory of Foliations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:38:31 | 只看該作者
Fiber Bundles and Foliations,hisms of a transverse section to a leaf, with a fixed point. In certain circumstances, however, it is possible to associate to the foliation a group of diffeomorphisms of a global transverse section, containing in a certain well-defined sense the holonomy of each leaf. This is the case of foliations
板凳
發(fā)表于 2025-3-22 03:31:18 | 只看該作者
地板
發(fā)表于 2025-3-22 05:53:04 | 只看該作者
5#
發(fā)表于 2025-3-22 10:30:12 | 只看該作者
6#
發(fā)表于 2025-3-22 16:25:35 | 只看該作者
7#
發(fā)表于 2025-3-22 20:36:05 | 只看該作者
Fiber Bundles and Foliations, of the fiber of .. In this manner properties of ? translate to properties of the foliation. For example, the action ? has exceptional minimal sets if and only if the same occurs for the foliation. Sacksteder’s example, of a .. codimension one foliation with an exceptional minimal set, is a typical case of what we will see in this chapter.
8#
發(fā)表于 2025-3-22 23:28:49 | 只看該作者
Holonomy and the Stability Theorems,imension . passing through a point . ∈ .. For each closed path γ in . passing through ., these returns can be expressed by a local .. diffeomorphism of Σ, .., with .. (.) = . and where for . ∈ Σ sufficiently near ., ..(.) is the first return “over γ” of the leaf of . which passes through ..
9#
發(fā)表于 2025-3-23 04:06:12 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:59 | 只看該作者
this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to t978-1-4684-7149-6978-1-4612-5292-4
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牙克石市| 桃源县| 响水县| 高陵县| 阳信县| 沈阳市| 绥德县| 长海县| 扎鲁特旗| 莒南县| 玉林市| 东莞市| 尉犁县| 上高县| 韩城市| 宁城县| 姜堰市| 杭锦后旗| 景谷| 盐边县| 襄城县| 建始县| 星子县| 油尖旺区| 岑溪市| 湖州市| 兴仁县| 永修县| 田东县| 同仁县| 东乌珠穆沁旗| 兴隆县| 佛山市| 衡水市| 深泽县| 永丰县| 临邑县| 安庆市| 浏阳市| 建阳市| 福建省|