找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Theory for Infinite Dimensional Systems; Hans J. Zwart Book 1989 Springer-Verlag Berlin Heidelberg 1989 feedback.spectra.stabili

[復(fù)制鏈接]
查看: 16459|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:22:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Theory for Infinite Dimensional Systems
編輯Hans J. Zwart
視頻videohttp://file.papertrans.cn/384/383617/383617.mp4
叢書名稱Lecture Notes in Control and Information Sciences
圖書封面Titlebook: Geometric Theory for Infinite Dimensional Systems;  Hans J. Zwart Book 1989 Springer-Verlag Berlin Heidelberg 1989 feedback.spectra.stabili
描述The monograph is addressed to researchers in the field of geometric theory of infinite dimensional systems. The author uses basic concepts of the infinite dimensional system theory, approximate controllability, initial observability, which are covered in the second and third chapter. The book is self-contained with respect to the notions of the geometric theory, although sometimes the author refers to the references for the finite dimensional case.
出版日期Book 1989
關(guān)鍵詞feedback; spectra; stability; system; systems theory
版次1
doihttps://doi.org/10.1007/BFb0044353
isbn_softcover978-3-540-50512-9
isbn_ebook978-3-540-46026-8Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

書目名稱Geometric Theory for Infinite Dimensional Systems影響因子(影響力)




書目名稱Geometric Theory for Infinite Dimensional Systems影響因子(影響力)學(xué)科排名




書目名稱Geometric Theory for Infinite Dimensional Systems網(wǎng)絡(luò)公開度




書目名稱Geometric Theory for Infinite Dimensional Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Theory for Infinite Dimensional Systems被引頻次




書目名稱Geometric Theory for Infinite Dimensional Systems被引頻次學(xué)科排名




書目名稱Geometric Theory for Infinite Dimensional Systems年度引用




書目名稱Geometric Theory for Infinite Dimensional Systems年度引用學(xué)科排名




書目名稱Geometric Theory for Infinite Dimensional Systems讀者反饋




書目名稱Geometric Theory for Infinite Dimensional Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:06 | 只看該作者
Geometric Theory for Infinite Dimensional Systems978-3-540-46026-8Series ISSN 0170-8643 Series E-ISSN 1610-7411
地板
發(fā)表于 2025-3-22 04:39:43 | 只看該作者
Book 1989nite dimensional system theory, approximate controllability, initial observability, which are covered in the second and third chapter. The book is self-contained with respect to the notions of the geometric theory, although sometimes the author refers to the references for the finite dimensional case.
5#
發(fā)表于 2025-3-22 11:05:08 | 只看該作者
0170-8643 ook is self-contained with respect to the notions of the geometric theory, although sometimes the author refers to the references for the finite dimensional case.978-3-540-50512-9978-3-540-46026-8Series ISSN 0170-8643 Series E-ISSN 1610-7411
6#
發(fā)表于 2025-3-22 15:16:00 | 只看該作者
0170-8643 f the infinite dimensional system theory, approximate controllability, initial observability, which are covered in the second and third chapter. The book is self-contained with respect to the notions of the geometric theory, although sometimes the author refers to the references for the finite dimen
7#
發(fā)表于 2025-3-22 20:11:31 | 只看該作者
Book 1989nite dimensional system theory, approximate controllability, initial observability, which are covered in the second and third chapter. The book is self-contained with respect to the notions of the geometric theory, although sometimes the author refers to the references for the finite dimensional cas
8#
發(fā)表于 2025-3-22 22:09:36 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:58 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:39 | 只看該作者
The disturbance decoupling problem with measurement feedback and stability,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
侯马市| 汉川市| 宝兴县| 广宗县| 台江县| 吉安市| 古田县| 江孜县| 榆树市| 双峰县| 德令哈市| 措美县| 保山市| 荥经县| 察隅县| 西峡县| 宁远县| 湛江市| 木兰县| 东平县| 肇庆市| 无极县| 扎囊县| 东山县| 宣武区| 雅安市| 方正县| 开阳县| 宜都市| 和平区| 桃源县| 宿松县| 临夏县| 安阳县| 广宗县| 喀喇沁旗| 合肥市| 夏津县| 塔河县| 鱼台县| 宜春市|