找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Sums: Bounds for Rare Events with Applications; Risk Analysis, Relia Vladimir Kalashnikov Book 1997 Springer Science+Business Med

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:51:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:21:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:51 | 只看該作者
Echocardiography in Mitral Valve Diseasensider the case where the d.f. . of summands in the underlying geometric sum may vary together with parameter . of the corresponding geometric distribution. Although the limiting results are ., they can easily be stated in the form of .. This is partly done in this chapter but generally this problem
14#
發(fā)表于 2025-3-24 02:06:53 | 只看該作者
15#
發(fā)表于 2025-3-24 06:03:26 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:42 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:41 | 只看該作者
Carla B. Rynkowski,Marcel J. Ariesgenerative processes. Such processes play a noticeable role in the theory of random processes and have many applications in biology, queueing, reliability, Markov chains, risk theory, simulation, etc. Typically, we study . taking reliability regenerative models as an example where such events can be
18#
發(fā)表于 2025-3-24 18:32:26 | 只看該作者
978-90-481-4868-4Springer Science+Business Media Dordrecht 1997
19#
發(fā)表于 2025-3-24 22:43:44 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:09 | 只看該作者
Metric Bounds,etrics in Sections 5.3 and 5.4 correspondingly. In Section 5.5 we analyze the continuity problem examining the deviations of . .(.) resulted from perturbations of the d.f. .. Two important generalizations (summands taking both positive and negative values and multivariate case) are considered in Sections 5.6 and 5.7 respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锡林郭勒盟| 那曲县| 辉南县| 海南省| 麻阳| 垫江县| 敦化市| 富顺县| 淮安市| 若羌县| 常德市| 西城区| 荔波县| 正镶白旗| 剑阁县| 金坛市| 梧州市| 阿拉善左旗| 清徐县| 张家界市| 张家港市| 剑川县| 临猗县| 修水县| 南江县| 靖江市| 垦利县| 台江县| 广河县| 西吉县| 贵溪市| 沧州市| 沂源县| 通江县| 抚宁县| 遂川县| 台中县| 龙里县| 太康县| 乌兰浩特市| 麻江县|