找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Sums: Bounds for Rare Events with Applications; Risk Analysis, Relia Vladimir Kalashnikov Book 1997 Springer Science+Business Med

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:51:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:21:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:51 | 只看該作者
Echocardiography in Mitral Valve Diseasensider the case where the d.f. . of summands in the underlying geometric sum may vary together with parameter . of the corresponding geometric distribution. Although the limiting results are ., they can easily be stated in the form of .. This is partly done in this chapter but generally this problem
14#
發(fā)表于 2025-3-24 02:06:53 | 只看該作者
15#
發(fā)表于 2025-3-24 06:03:26 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:42 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:41 | 只看該作者
Carla B. Rynkowski,Marcel J. Ariesgenerative processes. Such processes play a noticeable role in the theory of random processes and have many applications in biology, queueing, reliability, Markov chains, risk theory, simulation, etc. Typically, we study . taking reliability regenerative models as an example where such events can be
18#
發(fā)表于 2025-3-24 18:32:26 | 只看該作者
978-90-481-4868-4Springer Science+Business Media Dordrecht 1997
19#
發(fā)表于 2025-3-24 22:43:44 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:09 | 只看該作者
Metric Bounds,etrics in Sections 5.3 and 5.4 correspondingly. In Section 5.5 we analyze the continuity problem examining the deviations of . .(.) resulted from perturbations of the d.f. .. Two important generalizations (summands taking both positive and negative values and multivariate case) are considered in Sections 5.6 and 5.7 respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
綦江县| 西充县| 桦甸市| 隆德县| 磴口县| 鹤壁市| 洪泽县| 崇礼县| 静安区| 施秉县| 克山县| 昌邑市| 台北市| 临洮县| 祁东县| 礼泉县| 桐庐县| 长寿区| 基隆市| 贵阳市| 富平县| 互助| 遵化市| 辉南县| 江都市| 连江县| 绥江县| 靖州| 千阳县| 轮台县| 黎城县| 涞源县| 阿巴嘎旗| 当涂县| 杭州市| 临猗县| 澜沧| 玉门市| 德令哈市| 保德县| 金昌市|