找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structures of Statistical Physics, Information Geometry, and Learning; SPIGL‘20, Les Houche Frédéric Barbaresco,Frank Nielsen Con

[復制鏈接]
查看: 14361|回復: 54
樓主
發(fā)表于 2025-3-21 18:15:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning
副標題SPIGL‘20, Les Houche
編輯Frédéric Barbaresco,Frank Nielsen
視頻videohttp://file.papertrans.cn/384/383614/383614.mp4
概述Provides new geometric foundations of inference in machine learning based on statistical physics.Deepens mathematical physics models with new insights from statistical machine learning.Combines numeri
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Geometric Structures of Statistical Physics, Information Geometry, and Learning; SPIGL‘20, Les Houche Frédéric Barbaresco,Frank Nielsen Con
描述.Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces..This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les
出版日期Conference proceedings 2021
關鍵詞Conference Proceedings; Statistical inference; Geometric mechanics; Lie group machine learning; Informat
版次1
doihttps://doi.org/10.1007/978-3-030-77957-3
isbn_softcover978-3-030-77959-7
isbn_ebook978-3-030-77957-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning影響因子(影響力)




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning影響因子(影響力)學科排名




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning網(wǎng)絡公開度




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning網(wǎng)絡公開度學科排名




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning被引頻次




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning被引頻次學科排名




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning年度引用




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning年度引用學科排名




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning讀者反饋




書目名稱Geometric Structures of Statistical Physics, Information Geometry, and Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:49:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:24:30 | 只看該作者
Sequelae of Ebola Virus Disease, by briefly reviewing the different approaches to build densities on a manifold and shows the interest of wrapped distributions. We then construct wrapped densities on .(.) and discuss their statistical estimation. We conclude by an opening to the case of symmetric spaces.
地板
發(fā)表于 2025-3-22 08:14:05 | 只看該作者
https://doi.org/10.1007/978-94-015-5853-2nsion space. The entropy is generalized as a 4-vector and the temperature as a 5-vector. The introduction of the friction and momentum tensors allows to obtain a covariant formulation of the first and second principles of Thermodynamics.
5#
發(fā)表于 2025-3-22 11:32:40 | 只看該作者
6#
發(fā)表于 2025-3-22 14:04:42 | 只看該作者
7#
發(fā)表于 2025-3-22 18:52:58 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:19 | 只看該作者
Galilean Thermodynamics of Continuansion space. The entropy is generalized as a 4-vector and the temperature as a 5-vector. The introduction of the friction and momentum tensors allows to obtain a covariant formulation of the first and second principles of Thermodynamics.
9#
發(fā)表于 2025-3-23 05:14:29 | 只看該作者
Nonparametric Estimations and the Diffeological Fisher Metricnd slightly extending Lê’s theory in [.] to include weakly .-diffeological statistical models. Then we introduce the resulting notions of the diffeological Fisher distance, the diffeological Hausdorff–Jeffrey measure and explain their role in classical and Bayesian nonparametric estimation problems in statistics.
10#
發(fā)表于 2025-3-23 09:37:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
克山县| 石渠县| 衡东县| 宿州市| 东兴市| 五家渠市| 桐乡市| 连平县| 镇沅| 阿克陶县| 那坡县| 遂昌县| 二手房| 桂平市| 万全县| 昭觉县| 敦化市| 永嘉县| 榆社县| 理塘县| 金平| 洪泽县| 全州县| 昌平区| 宁波市| 特克斯县| 桦南县| 兴海县| 梨树县| 满洲里市| 临湘市| 荔波县| 什邡市| 巴中市| 苍溪县| 五华县| 秭归县| 青神县| 进贤县| 廊坊市| 武山县|