找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structures of Information; Frank Nielsen Book 2019 Springer Nature Switzerland AG 2019 Hessian Information Geometry.Shape Space.

[復(fù)制鏈接]
樓主: Fuctionary
11#
發(fā)表于 2025-3-23 10:41:46 | 只看該作者
Rho-Tau Embedding of Statistical Models,he coordinates of a parametric model are affine then the rho-tau metric tensor is Hessian and the dual coordinates are affine as well. We illustrate our approach using models belonging to deformed exponential families, and give a simple and precise characterization for the rho-tau metric to become Hessian.
12#
發(fā)表于 2025-3-23 14:34:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:46 | 只看該作者
Rho-Tau Embedding of Statistical Models,-tau divergence. It depends only on the product . of the derivatives of . and .. Hence, once the metric tensor is fixed still some freedom is left to manipulate the geometry. We call this the .. A sufficient condition for the existence of a dually flat geometry is established. It is shown that, if t
15#
發(fā)表于 2025-3-24 03:15:40 | 只看該作者
A Class of Non-parametric Deformed Exponential Statistical Models,t zero. This class generalizes the class introduced by N.J.?Newton. We discuss the convexity and regularity of the normalization operator, the form of the deformed statistical divergences and their convex duality, the properties of the escort densities, and the affine manifold structure of the stati
16#
發(fā)表于 2025-3-24 10:01:21 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:37 | 只看該作者
Monte Carlo Information-Geometric Structures,pect to any statistical divergence like the Kullback–Leibler (KL) divergence or the Hellinger divergence. When equipping a statistical manifold with the KL divergence, the induced manifold structure is dually flat, and the KL divergence between distributions amounts to an equivalent Bregman divergen
19#
發(fā)表于 2025-3-24 22:47:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永顺县| 阿拉善左旗| 南昌县| 昌乐县| 鹤峰县| 晋城| 玛曲县| 祥云县| 巴林左旗| 青海省| 太和县| 墨竹工卡县| 平塘县| 历史| 北票市| 宁陕县| 讷河市| 田东县| 岑巩县| 柏乡县| 连云港市| 六盘水市| 安多县| 保定市| 呼伦贝尔市| 鹤岗市| 涡阳县| 兴化市| 望江县| 射阳县| 朝阳市| 石台县| 方山县| 广灵县| 梨树县| 柯坪县| 东丰县| 周至县| 石屏县| 合川市| 临高县|