找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp

[復(fù)制鏈接]
樓主: MASS
31#
發(fā)表于 2025-3-26 23:42:41 | 只看該作者
Local Tangent Space Alignmentame geometric intuitions as LLE: If a data set is sampled from a smooth manifold, then the neighbors of each point remain nearby and similarly co-located in the low dimensional space. LTSA uses a different approach to the embedded space compared with LLE. In LLE, each point in the data set is linear
32#
發(fā)表于 2025-3-27 02:22:32 | 只看該作者
33#
發(fā)表于 2025-3-27 06:25:16 | 只看該作者
34#
發(fā)表于 2025-3-27 12:56:43 | 只看該作者
Diffusion Mapsbserved data resides. In Chapter 12, it was pointed out that Laplace-Beltrami operator directly links up with the heat diffusion operator by the exponential formula for positive self-adjoint operators. Therefore, they have the same eigenvector set, and the corresponding eigenvalues are linked by the
35#
發(fā)表于 2025-3-27 17:36:37 | 只看該作者
Fast Algorithms for DR Approximationta vectors is very large. The spectral decomposition of a large dimensioanl kernel encounters difficulties in at least three aspects: large memory usage, high computational complexity, and computational instability. Although the kernels in some nonlinear DR methods are sparse matrices, which enable
36#
發(fā)表于 2025-3-27 18:59:05 | 只看該作者
37#
發(fā)表于 2025-3-28 00:14:54 | 只看該作者
https://doi.org/10.1007/978-3-642-27497-8HEP; dimensionality reduction; geometric diffusion; intrinsic dimensionality of data; manifolds; neighbor
38#
發(fā)表于 2025-3-28 05:59:36 | 只看該作者
St Ephrem and the Pursuit of Wisdom2 discusses the acquisition of high-dimensional data. When dimensions of the data are very high, we shall meet the so-called curse of dimensionality, which is discussed in Section 3. The concepts of extrinsic and intrinsic dimensions of data are discussed in Section 4. It is pointed out that most hi
39#
發(fā)表于 2025-3-28 09:28:38 | 只看該作者
40#
發(fā)表于 2025-3-28 11:43:18 | 只看該作者
https://doi.org/10.1007/978-1-349-22299-5he data geometry is inherited from the manifold. Since the underlying manifold is hidden, it is hard to know its geometry by the classical manifold calculus. The data graph is a useful tool to reveal the data geometry. To construct a data graph, we first find the neighborhood system on the data, whi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库尔勒市| 青铜峡市| 中山市| 汶川县| 九龙县| 南和县| 德州市| 永善县| 米脂县| 肃南| 微博| 华阴市| 汨罗市| 辽中县| 承德县| 遵义市| 金山区| 沽源县| 永平县| 惠来县| 石河子市| 澄城县| 太仓市| 寻甸| 华宁县| 望江县| 房山区| 象山县| 太保市| 铁力市| 临高县| 邢台县| 出国| 随州市| 兴仁县| 都匀市| 定安县| 万山特区| 曲松县| 芦山县| 金阳县|