找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Representation Theory and Gauge Theory; Cetraro, Italy 2018 Alexander Braverman,Michael Finkelberg,Alexei Oblo Book 2019 Springer

[復(fù)制鏈接]
查看: 14518|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:19:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Representation Theory and Gauge Theory
副標(biāo)題Cetraro, Italy 2018
編輯Alexander Braverman,Michael Finkelberg,Alexei Oblo
視頻videohttp://file.papertrans.cn/384/383602/383602.mp4
概述Provides an update on the current state of research in some key areas of geometric representation theory and gauge theory.Features lectures authored by leading researchers in the area.Each lecture is
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Representation Theory and Gauge Theory; Cetraro, Italy 2018 Alexander Braverman,Michael Finkelberg,Alexei Oblo Book 2019 Springer
描述.This book offers a review of the vibrant areas of geometric representation theory and gauge theory, which are characterized by a merging of traditional techniques in representation theory with the use of powerful tools from algebraic geometry, and with strong inputs from physics. The notes are based on lectures delivered at the CIME school "Geometric Representation Theory and Gauge Theory" held in Cetraro, Italy, in June 2018. They comprise three contributions, due to Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Braverman and Finkelberg’s notes review the mathematical theory of the Coulomb branch of 3D N=4 quantum gauge theories. The purpose of Negut’s notes is to study moduli spaces of sheaves on a surface, as well as Hecke correspondences between them. Oblomkov‘s notes concern matrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration forPhD students and researchers.?.
出版日期Book 2019
關(guān)鍵詞Braid Groups and Markov Trace; Coulomb Branch of Quantum Gauge Theories; Hecke Correspondences Between
版次1
doihttps://doi.org/10.1007/978-3-030-26856-5
isbn_softcover978-3-030-26855-8
isbn_ebook978-3-030-26856-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Geometric Representation Theory and Gauge Theory影響因子(影響力)




書目名稱Geometric Representation Theory and Gauge Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Representation Theory and Gauge Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory被引頻次




書目名稱Geometric Representation Theory and Gauge Theory被引頻次學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory年度引用




書目名稱Geometric Representation Theory and Gauge Theory年度引用學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory讀者反饋




書目名稱Geometric Representation Theory and Gauge Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:39 | 只看該作者
0075-8434 atrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration forPhD students and researchers.?.978-3-030-26855-8978-3-030-26856-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 03:01:43 | 只看該作者
Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures, we review the constructions and results of Braverman et al. (Adv Theor Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019; Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d .?=?4 quantum gauge theories (of cotangent type) is give
地板
發(fā)表于 2025-3-22 06:25:20 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:52 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:04 | 只看該作者
Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures,heor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d .?=?4 quantum gauge theories (of cotangent type) is given, and also present a framework for studying some further mathematical structures (e.g. categories of line operators in the corresponding topologically twisted theories) related to these theories.
7#
發(fā)表于 2025-3-22 18:06:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:59:07 | 只看該作者
9#
發(fā)表于 2025-3-23 02:03:55 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华安县| 林州市| 安平县| 花垣县| 巴彦县| 红桥区| 若羌县| 屏东县| 平顶山市| 呼玛县| 昌吉市| 阿拉尔市| 星子县| 安福县| 会同县| 北碚区| 都兰县| 容城县| 平潭县| 博湖县| 昭平县| 屯门区| 开鲁县| 鹤壁市| 青神县| 股票| 朝阳市| 衡阳县| 日喀则市| 于田县| 全州县| 温宿县| 陆良县| 克东县| 梅河口市| 霸州市| 伊宁县| 资源县| 松原市| 南平市| 无极县|