找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; Vincenzo Ferone,Tatsuki Kawakami,Futoshi Takahashi Book 2021 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: thyroidectomy
11#
發(fā)表于 2025-3-23 09:50:34 | 只看該作者
https://doi.org/10.1007/978-1-4842-2623-0ase with small initial data in weighted ..-spaces. This problem in multidimensional cases was dealt with in Sobajima (Differ Integr Equ 32:615–638, 2019) via the weighted Hardy inequality which is false in one-dimension. The crucial idea of the proof is the use of an incomplete version of Hardy ineq
12#
發(fā)表于 2025-3-23 15:40:01 | 只看該作者
https://doi.org/10.1007/978-3-030-73363-6Elliptic equations; Parabolic equations; Functional and isoperimetric inequalities; Overdetermined and
13#
發(fā)表于 2025-3-23 21:55:49 | 只看該作者
14#
發(fā)表于 2025-3-24 00:50:19 | 只看該作者
,Wave–Particle Duality in Quantum Optics,This note deals with a one-dimensional quasilinear chemotaxis system. The first part summarizes recent results, in which a new energy-like functional is introduced and plays a key role. In the latter half, the energy-like functional will be derived in a more general situation.
15#
發(fā)表于 2025-3-24 03:50:50 | 只看該作者
https://doi.org/10.1007/978-94-007-2404-4Solvability of semilinear heat equations with general nonlinearity is investigated. Applying a quasi scale invariant transformation, we clarify the threshold singularity of initial data for existence and nonexistence results.
16#
發(fā)表于 2025-3-24 09:01:25 | 只看該作者
17#
發(fā)表于 2025-3-24 14:16:34 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:46:18 | 只看該作者
20#
發(fā)表于 2025-3-25 02:01:16 | 只看該作者
A Note on Radial Solutions to the Critical Lane-Emden Equation with a Variable Coefficient,In this note, we consider the following problem . where .?≥?3 and . is the unit ball centered at the origin and .(.) is a radial H?lder continuous function such that .(0)?=?0. We prove the existence and nonexistence of radial solutions by the variational method with the concentration compactness analysis and the Pohozaev identity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃宁县| 赣州市| 界首市| 恩施市| 陆丰市| 怀安县| 广州市| 木兰县| 库伦旗| 湘乡市| 梁河县| 廊坊市| 柏乡县| 江都市| 衢州市| 商城县| 政和县| 乡宁县| 五华县| 穆棱市| 图们市| 依安县| 连山| 府谷县| 平罗县| 福泉市| 河池市| 怀宁县| 湟中县| 蚌埠市| 南部县| 安宁市| 大埔县| 东乡| 水城县| 邢台市| 营口市| 乡城县| 屯昌县| 弥勒县| 项城市|